
Solution to Written Assignment 2
SENG 474/CSC 578D

Question 1

(a) CountMap vector on the first pass looks like this: [0, 5, 5, 3, 6, 1, 3, 2, 6, 3, 2]. Frequent buckets
are those with CountMap[h] ≥ 4, that is buckets in {1, 2, 4, 8}.

(b) The pairs that are counted in the second pass are those that are hashed to frequent buckets.
{1, 2}, {1, 4}, {2, 4}, {2, 6}, {3, 4}, {3, 5}, {4, 6}, {5, 6}

Question 2

For simplicity, we ignore the memory needed to hold the CountMap in the first pass. Observe that:

• The memory needed to hold all frequent items is 25 ∗ 104 ∗ 4 = 106 bytes.

• The memory needed to count the support of truly frequent item pair in 2nd pass is 12 × 106

bytes, since for each item pair, we need 8 bytes to hold the pair and 4 bytes for the counter.

Assume that we construct a BitMap of B bits in the 1st pass. There are two extremes:

• If B = 106, every location of the BitMap would be 1, thus, in the 2nd pass, we need to count
the support for all P pairs, that takes 12P bytes of memory. The total memory used by the
algorithm is 13× 106 + 106/8 + 12P bytes

• If B = 106 + P , every location of the BitMap, except for those of truly frequent itempairs,
would be 0, thus, in the 2nd pass, we don’t need to count the support for all P pairs. The
total memory used by the algorithm is 13× 106 + (106 + P )/8 bytes.

So it does seem like we need 13×106 + (106 +P )/8 bytes of memory as in the second case. However,
we can do much better than that.

In the following, we show how to determine B so that the total memory of the algorithm is
minimum. Let B = 106 × b and P = 106 × p for some positive numbers b, p. Note that b ≥ 1 since
B ≥ 106. Since there are 106 + P = 106(p+ 1) candidate pairs, the number of candidate pairs hold
by each location in the CountMap is:

106(p+ 1)

B
=
p+ 1

b
(1)

Note that since P = 106p < (25 × 104)2/2, we have p < 3.125 × 104. Let’s assume for now that
p+1
b < 104. Hence, except for 106 locations of the BitMap corresponding to truly frequent itempairs,
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other locations are set to 0. Hence, the number of candidate pairs we need to count the support in
2nd phase is:

106 + P − (
p+ 1

b
)(B − 106) = 106 + 106p− (

p+ 1

b
)(b− 1)106

= 106
p+ 1

b

(2)

which costs 12× 106 p+1
b = 12× 106 p+1

b bytes. Hence, the total memory (in bytes) of the algorithm
is:

13× 106 + 106b/8 + 12× 106
p+ 1

b
= 106(13 +

b

8
+ 12

p+ 1

b
) (3)

Obviously, we should choose b to minimize b
8 + 12(p+1)

b . Observe that b
8 + 12(p+1)

b is minimum when

b = 4
√

6(p+ 1) and the minimum memory (in bytes) is:

106(13 +
√

6(p+ 1)) (4)

However, note that B < 106 + P , since otherwise, we can go with the solution in the second
extreme case above. This implies:

106b < 106 + 106p (5)

that implies 4
√

6(p+ 1) < (p+1). Solving this inequality, we get p > 95. Also, p+1
b must be at most

104. This gives p + 1 < 104 × 4
√

6(p+ 1). Solving this inequality gives p < 96× 108, which is true
because we show earlier that p < 3.125× 104.

In conclusion, the minimum memory is:

S =

{
13× 106 + 106+P

8 if P ≤ 95× 106

106(13 +
√

6( P
106

+ 1)) otherwise

Question 3

By cyclic property, we have Tr(CAB) = Tr(ABC).

BC =

[
−1 2
3 1

] [
2 −1
2 1

]
=

[
2 3
8 −2

]
It immediately follows:

ABC =

[
a11 a12
a21 a22

] [
2 3
8 −2

]
=

[
2a11 + 8a12 3a11 − 2a12
2a12 + 8a22 3a21 − 2a22

]
So Tr(ABC) = 2a11 + 8a12 + 3a21 − 2a22. That implies:

∇ATr(ABC) =

[
2 8
3 −2

]
Another way to compute ∇ATr(ABC) is using the fact that ∇ATr(AB) = BT , we have:

∇ATr(CAB) = (BC)T = CTBT =

[
2 2
−1 1

] [
2 3
8 −2

]
=

[
2 8
3 −2

]
.
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Question 4

(a) We want to prove that Tr(AB) = Tr(BA). Using the definition of trace, for two n×n matrices
A and B we have:

Tr(AB) =
n∑

i=1

(AB)[i, i]

=
n∑

i=1

m∑
j=1

(A[i, j]B[j, i])

=
m∑
j=1

n∑
i=1

(B[j, i]A[i, j])

=

m∑
j=1

(BA)[j, j]

= Tr(BA)

(b) By part (a), we have:

Tr(AB) =

m∑
j=1

n∑
i=1

(B[j, i]A[i, j])

Thus, ∂Tr(AB)
∂A[i,j] = B[j, i]. Hence, ∇ATr(AB) = BT .

Question 5

(a) γ(L) = min(L.P ). Also note that d(x1, L1) = |wT x1+b|
‖w‖2 . Using this, for L1, we have w =

[
1
1

]
,

so ‖w‖2 =
√

2. It follows that:

d(x1, L1) =
1√
2

d(x2, L1) =
1√
2

d(x3, L1) =
3√
2

d(x4, L1) =
3√
2

The smallest value is 1√
2
. Thus, γ(L1) = 1√

2
. Performing the same for other lines, we get γ(L2) =

√
2,

γ(L3) = 1√
2
, γ(L4) = 1√

5
.

(b) Observe that for any two points p, q on the plane, the line that separating the two points
and has maximum margin w.r.t the two points will go through the midpoint of the segment pq and
perpendicular to pq.
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Apply the observation to two points (

[
1
2

]
,−1), (

[
3
4

]
, 1). The line that has maximum w.r.t these

two points will go through the point

[
2
3

]
and is perpendicular to the vector

[
1
1

]
, which happens to

be L2. The margin of L2 w.r.t the two points is
√

2. Other line separating these two points would
have margin less than

√
2. Note that any line separating four points would separate the two points

as well. Thus, for any separating line (L) : w1x1 + w2x2 + b = 0 of the four points, γ(L2) ≥ γ(L).

Question 6

A good starting value of b and vector w would be b = 0 and wT = [−1, 1] where it classifies 4 of the
given points correctly. To perform gradient descent, each step follows update rule as below:

w[j] = w[j]− η(w[j] + C
n∑

i=1

−yixi[j].1
[
yi(w

Txi + b) ≤ 1
]
)

b = b− η(C
n∑

i=1

−yi.1
[
yi(w

Txi + b) ≤ 1
]
)

The result of first phase:

w[1] = −1− 0.2(−1 + 0.1
6∑

i=1

−yixi[j].1
[
yi(w

Txi + b) < 1
]
) = −0.74

w[2] = −1− 0.2(1 + 0.1

6∑
i=1

−yixi[j].1
[
yi(w

Txi + b) < 1
]
) = 0.76

b = 0− 0.2(0.1

6∑
i=1

−yi.1
[
yi(w

Txi + b) ≤ 1
]
) = 0

Doing the same for step two yields w = [−0.4, 0.6] and b = 0.04.
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