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Clustering problem

Given a dataset D, find a way to split D into clusters such that data
points in the same clusters have high similarity while data points in
different clusters have low similarity.

Sometimes high similarity means low distance and vice versa.
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Clustering problem
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Figure: An example of clustering problem1

1https://en.wikipedia.org/wiki/Cluster_analysis#/media/File:

OPTICS-Gaussian-data.svg
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Distance and Similarity Measures

Given two points (vectors) p,q ∈ Rd , we can measure:

The Euclidean distance between p and q is:

d(p,q) =

√√√√ d∑
i=1

(p[i ]− q[i ])2 (1)

The cosine similarity between p and q is:

cos(p,q) =

∑n
i=1 p[i ]q[i ]

||p||2||q||2
(2)
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The Curse of Dimensionality

High dimensional Euclidean spaces are very weird:

Choosing n random points on the unit cube, i.e, choosing x[i ]
randomly from [0, 1] for each point x, almost all points will have a
distance close to the average distance.

The cosine between two random vectors is almost close to 0 w.h.p,
which means the angle is close to 90 degrees.

Choosing random points in a hypersphere, most of them would close
to the surface of the sphere.

Many algorithms have running time of the form 2d and in many
cases, this is the best we can do.

Many more.
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Hierarchical Clustering

HCClustering(D)
C ← ∅
for each p in D
C ← C ∪ {p}

repeat
Pick the best two clusters C1,C2 in C
C ← C1 ∪ C2

C ← C \ {C1,C2} ∪ C
until stop
return C

Which cluster pair is the best to merge?

When to stop?
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Stopping Conditions

There are so many possible ways to determine the stopping condition.
Here are a few examples:

When the number of clusters reach a predetermined threshold K .

When the combination of two best clusters produce an unsatisfactory
results:

I If the diameter of the resulting cluster is big. Diameter is the maximum
pairwise distance of points in a cluster.

I If the density of the resulting cluster is low. Density is roughly the
number of points per unit volume of the cluster.
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Stopping Conditions (Cont.)

There are so many possible ways to determine the stopping condition.
Here are a few examples:

There is only one cluster left. Typically, in this case, we are interested
in the cluster tree: the tree representing the merging process.

(4,10)

(4,8)

(7,10)

(6,8)

(3,4)

(2,2)
(5,2)

(9,3)

(10,5)

(11,4)

(12,3)

(12,6)

(2,2)

(3,4)

(5,2)

(4,8)

(4,10)

(6,8)

(7,10)

(11,4)

(12,3)

(10,5)

(9,3)

(12,6)

Hung Le (University of Victoria) Clustering March 1, 2019 8 / 24



Best Cluster Pair

Two clusters are the best for merging if:

Their centroids are closest among all pairs of clusters. A centroid of
the point set X is the average point c:

c =

∑
x∈X x

|X |
(3)

Centroids are only well-defined in Euclidean spaces.

Or the minimum pairwise distance of points between two clusters is
minimum (single-linkage).

Or the average distance between two clusters is minimum
(average-linkage).
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Best Cluster Pair (Cont.)

Two clusters are the best for merging if:

Or combining two clusters produces the cluster with lowest radius.
Radius of a cluster X with centroid c is:

Rad(X ) = max
x∈X

d(x, c) (4)

Or combining two clusters produces the cluster with smallest diameter
(complete-linkage). The diameter of a cluster X is:

Diam(X ) = maxx,y∈Xd(x, y) (5)
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Effect of Different Merging Criteria
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Closest Centroid Rule

Minimum Diameter Rule
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Computational Complexity of HC

Let’s focus on a specific setting:

Two clusters are the best for merging if their centroids are closest
among all pairs of clusters in C.

Stop merging when there is only one cluster left.
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Hierarchical Clustering

HCClustering(D)
C ← ∅
for each p in D
C ← C ∪ {p}

repeat
Pick the clusters C1,C2 in C with minimum centroid distance.
C ← C1 ∪ C2

C ← C \ {C1,C2} ∪ C
until |C| = 1
return C

Time complexity:

O(n) iterations.

O(n2) time to find the two clusters with minimum centroid distance.

Worst case time complexity is O(n3).
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Speeding up HC

Ideas: using a Priority Queue to keep track of cluster distances, so that
each iteration can be done in O(n log n) time.

The total running time is O(n2 log n). Much better than O(n3) but
still far from the ideal O(n) running time.

Details for implementing HC with priority queue Q:

Initially, compute distances between every pair of points, put them all
in the queue Q. This takes O(n2) time.

In each iteration:
I Fetch the smallest distance from Q, along with two corresponding

clusters, say C1,C2. This takes O(log n) time.
I Delete all distances associated with C1,C2 from Q. There are at most

O(n) such distances. Thus, this takes O(n log n) time total.
I Compute the distances from the new cluster to other clusters in C, and

put all such distances to Q. There are at most O(n) new distances.
Thus, this takes O(n log n) time total.
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HC for non-Euclidean spaces

In non-Euclidean spaces, the notion of centroids may not be well-defined.
But we can define clustroids instead. A clustroid of a cluster X is a point
x ∈ X that minimizes:

Sum of distances to other points in X .

Or maximum distance to other points in X .

Or sum of square of distances to other points in X .
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K-means2

K-Means(D, k)
Choose k points {c1, . . . , ck} in D to be initial centroids
repeat

for each point p ∈ D
Assign p to the cluster of the closest centroid.

Let C1, . . . ,Ck be the clusters after the assignment.
Recompute centroids ci for each Ci , 1 ≤ i ≤ k .

. until no assignment change
return {C1, . . . ,Ck}

How to initialize centroids?

How to choose k?

2This is slightly different from the algorithm presented in the MMDS book.
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Choosing Initial Centroids

Ideas: We want to pick centroids that likely belong to different clusters.
There are two approaches:

Pick points that are as far away from each other as possible.

Sample a small set of points, apply (may be expensive) clustering
algorithm, such as Hierarchical Clustering, to form k clusters on the
sample set. Then choose centroids of the clusters.
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Choosing Initial Centroids (Cont.)

How to choose far way point set:

ChooseCentroids(D, k)
Choose a random point c1 ∈ D
C ← {c1}
while |C | < k

Choose c ∈ D \ {C} that maximize d(c,C )
Add c to C

return C

Recall:
d(x,C ) = min

c∈C
d(x, c) (6)
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Choosing k
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Time complexity

K-Means(D, k)
Choose k points {c1, . . . , ck} in D to be initial centroids
repeat

for each point p ∈ D
Assign p to the cluster of the closest centroid.

Let C1, . . . ,Ck be the clusters after the assignment.
Recompute centroids ci for each Ci , 1 ≤ i ≤ k .

. until no assignment change
return {C1, . . . ,Ck}

The time complexity is O(NkdT ) where:

d is the dimension of the data.

T is the number of iterations. Typically, T ∼ 100− 1000.
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CURE

CURE (Clustering Using REpresentatives). It has two prominent
properties:

It can work with very large data.

It can produce clusters of arbitrary shape.
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CURE - 1st Phase

1 Sample the dataset and cluster it in main memory. It is advisable to
use Hierarchical Clustering.

2 Choose a small set of representative points for each cluster. We
should choose points that are far away from each other, as in
initializing K-means.

3 Move each of the representative points by, say 20% distance from
each point to its cluster centroid, along the line to the centroid.

4 Merge two clusters of their representative point set are close to each
other. We can repeat this step until every clusters are sufficiently far
from each other.
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CURE - 1st Phase

Hung Le (University of Victoria) Clustering March 1, 2019 23 / 24

Figure: Choosing representatives Figure: Moving representatives.



CURE - 2nd Phase

For each point p in the full dataset D, assign p to the cluster of closest
representative points.
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