Support Vector Machine

Hung Le
University of Victoria

February 12, 2019

Binary Classification

You are given a set of n data points $\left.\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \mathbf{x}_{2}, y_{y}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ where each $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$. Find a classifier $f():. \mathbb{R}^{d} \rightarrow\{-1,1\}$ such that:

$$
f\left(\mathbf{x}_{i}\right)= \begin{cases}1 & \text { if } y_{i}=1 \\ -1 & \text { if } y_{i}=-1\end{cases}
$$

Figure: Sprial data ${ }^{1}$

Applications

- Spam email classification:
- Each data point is $\left(\mathbf{x}_{i}, y_{i}\right)$ where \mathbf{x}_{i} is a vector representation of i-th email, and $y_{i}=1 /-1$ indicates the email is spam/non-spam.
- Testing disease: determine a person as a certain disease or not.
- Weather forecasting: tomorrow is rainy or not.

Support Vector Machine

You are given a set of n data points $\left.\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \mathbf{x}_{2}, y_{y}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ where each $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$. Find a separating hyperplane $w^{\top} \mathbf{x}+b=0$ such that:

- $w^{\top} \mathbf{x}_{i}+b>0$ if $y_{i}=1$
- $w^{\top} \mathbf{x}_{i}+b<0$ if $y_{i}=-1$

Support Vector Machine

You are given a set of n data points $\left.\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \mathbf{x}_{2}, y_{y}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ where each $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$. Find a separating hyperplane $w^{T} \mathbf{x}+b=0$ such that:

- $w^{\top} \mathbf{x}_{i}+b>0$ if $y_{i}=1$
- $w^{\top} \mathbf{x}_{i}+b<0$ if $y_{i}=-1$

We assume that our data is linearly separable, i.e, there exists such a separating hyperplane.

Support Vector Machine - An Example

Support Vector Machine - A Toy Example

Given four points $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],-1\right),\left(\left[\begin{array}{l}2 \\ 1\end{array}\right],-1\right),\left(\left[\begin{array}{l}3 \\ 4\end{array}\right], 1\right),\left(\left[\begin{array}{l}4 \\ 3\end{array}\right], 1\right)$. Find a separating line $w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b=0$ for these points.

Support Vector Machine - A Toy Example

There are several possible lines:

$$
\begin{array}{ll}
\left(L_{1}\right): x_{1}+x_{2}-4=0 & \left(L_{2}\right): x_{1}+x_{2}-5=0 \tag{1}\\
\left(L_{3}\right): x_{1}+x_{2}-6=0 & \left(L_{4}\right): x_{1}+2 x_{2}-6=0
\end{array}
$$

Which line should we choose? In theory, any line is acceptable.

SVM separating principle

Choose a line that that maximizes the margin of the point set to the separating line.

SVM separating principle

Choose a line that that maximizes the margin of the point set to the separating line.

Margin of a separating line (L) w.r.t the point set \mathcal{D} is the minimum distance of the point set to the line:

$$
\begin{equation*}
\gamma(L)=\min _{\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{D}} d\left(\mathbf{x}_{i}, L\right) \tag{2}
\end{equation*}
$$

SVM separating principle

Choose a line that that maximizes the margin of the point set to the separating line.

Margin of a separating line (L) w.r.t the point set \mathcal{D} is the minimum distance of the point set to the line:

$$
\begin{equation*}
\gamma(L)=\min _{\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{D}} d\left(\mathbf{x}_{i}, L\right) \tag{2}
\end{equation*}
$$

Recall, distance from a point $\mathbf{x}_{0} \in \mathrm{R}^{d}$ to the line $(L): \mathbf{w}^{T} \mathbf{x}+b=0$ is:

$$
\begin{equation*}
d\left(\mathbf{x}_{0}, L\right)=\frac{\left|\mathbf{w}^{T} \mathbf{x}_{0}+b\right|}{\|\mathbf{w}\|_{2}} \tag{3}
\end{equation*}
$$

where $\|\mathbf{w}\|_{2}=\sqrt{\sum_{i=1}^{d} w[i]^{2}}$

Back to our Toy Example

$$
\begin{array}{ll}
\left(L_{1}\right): x_{1}+x_{2}-4=0 & \left(L_{2}\right): x_{1}+x_{2}-5=0 \\
\left(L_{3}\right): x_{1}+x_{2}-6=0 & \left(L_{4}\right): x_{1}+2 x_{2}-6=0
\end{array}
$$

SVM will choose ($L 2$) with $\gamma\left(L_{2}\right)=\sqrt{2}$ (see the board calculation)

Support Vector Machine

You are given a set of n data points $\left.\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \mathbf{x}_{2}, y_{y}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ where each $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$. Find a separating hyperplane $(L): w^{\top} \mathbf{x}+b=0$ such that:

- $w^{T} \mathbf{x}_{i}+b>0$ if $y_{i}=1$
- $w^{\top} \mathbf{x}_{i}+b<0$ if $y_{i}=-1$
and the margin $\gamma(L)$ is maximum among all possible separating hyperplanes.

Points \mathbf{x}_{j} that have $d\left(L, \mathbf{x}_{i}\right)=\gamma(L)$ are called support vectors.

Support Vector Machine

The problem is equivalent to:
Find \mathbf{w}, b that:

$$
\begin{equation*}
\operatorname{maximize}\left(\min _{i} \frac{\left|\mathbf{w}^{\top} \mathbf{x}_{i}+b\right|}{\|w\|_{2}}\right) \tag{5}
\end{equation*}
$$

Support Vector Machine

The problem is equivalent to:
Find \mathbf{w}, b that:

$$
\begin{equation*}
\operatorname{maximize}\left(\min _{i} \frac{\left|\mathbf{w}^{\top} \mathbf{x}_{i}+b\right|}{\|w\|_{2}}\right) \tag{5}
\end{equation*}
$$

Observation

If (\mathbf{w}, b) defines a valid SVM hyperplane, then $(c \cdot \mathbf{w}, c \cdot b)$ also defines a valid SVM hyperplane.

Support Vector Machine

The problem is equivalent to:
Find \mathbf{w}, b that:

$$
\begin{equation*}
\operatorname{maximize}\left(\min _{i} \frac{\left|\mathbf{w}^{\top} \mathbf{x}_{i}+b\right|}{\|w\|_{2}}\right) \tag{5}
\end{equation*}
$$

Observation

If (\mathbf{w}, b) defines a valid SVM hyperplane, then $(c \cdot \mathbf{w}, c \cdot b)$ also defines a valid SVM hyperplane.

Thus, we can assume that:

- $\mathbf{w}^{T} \mathbf{x}_{j}+b=1$ for all support vectors \mathbf{x}_{j} of 1-class.
- $\mathbf{w}^{T} \mathbf{x}_{j}+b=-1$ for all support vectors \mathbf{x}_{j} of (-1)-class.

Support Vector Machine

The problem becomes (see the board calculation):
Find \mathbf{w}, b that :

$$
\begin{gather*}
\text { minimize } \quad \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \tag{6}\\
\text { subject to } \quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i
\end{gather*}
$$

Regularization Variant of SVM

Transform the constrained optimization problem from SVM to:
Find \mathbf{w}, b that :

$$
\operatorname{minimize} \quad f(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C\left(\sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)\right)
$$

where C is a chosen positive number.

Regularization Variant of SVM

Transform the constrained optimization problem from SVM to:
Find \mathbf{w}, b that :

$$
\operatorname{minimize} \quad f(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C\left(\sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)\right)
$$

where C is a chosen positive number.

- When C is sufficiently big, we force the optimization algorithm returning (\mathbf{w}, b) such that $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1$ for all i. This is only possible when the data is linearly separable.

Regularization Variant of SVM

Transform the constrained optimization problem from SVM to:
Find \mathbf{w}, b that :

$$
\operatorname{minimize} \quad f(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C\left(\sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)\right)
$$

where C is a chosen positive number.

- When C is sufficiently big, we force the optimization algorithm returning (\mathbf{w}, b) such that $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1$ for all i. This is only possible when the data is linearly separable.
- When C is chosen appropriately, the optimization problem 7 has a regularizing effect.
- We accept mis-classified points, but most other points are far away from the hyperplane.
- The problem is well-defined even if the data is NOT linearly separable.
C is called the regularization parameter.

Optimization by SGD

Let

$$
\begin{equation*}
L_{i}(\mathbf{w}, b)=\max \left(0,1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right) \tag{8}
\end{equation*}
$$

Optimization by SGD

Let

$$
\begin{equation*}
L_{i}(\mathbf{w}, b)=\max \left(0,1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right) \tag{8}
\end{equation*}
$$

$L_{i}(\mathbf{w}, b)$ is called a hinge function and its value is called a hinge loss.

Optimization by SGD

Let

$$
\begin{equation*}
L_{i}(\mathbf{w}, b)=\max \left(0,1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right) \tag{8}
\end{equation*}
$$

$L_{i}(\mathbf{w}, b)$ is called a hinge function and its value is called a hinge loss. We have:

$$
\frac{\partial L_{i}(\mathbf{w}, b)}{\partial w[j]}= \begin{cases}-y_{i} x_{i}[j] & \text { if } y_{i}\left(\mathbf{w}^{T} x+b\right)<1 \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\frac{\partial L_{i}(\mathbf{w}, b)}{\partial b}= \begin{cases}-y_{i} & \text { if } y_{i}\left(\mathbf{w}^{T} x+b\right)<1 \tag{10}\\ 0 & \text { otherwise }\end{cases}
$$

Optimization by SGD

Since:

$$
\begin{equation*}
f(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{n} L_{i}(\mathbf{w}) \tag{11}
\end{equation*}
$$

we have:

$$
\begin{equation*}
\frac{\partial f(\mathbf{w}, b)}{\partial w[j]}=w[j]+C \sum_{i=1}^{n} \frac{\partial L_{i}(\mathbf{w}, b)}{\partial w[j]} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f(\mathbf{w}, b)}{\partial b}=C \sum_{i=1}^{n} \frac{\partial L_{i}(\mathbf{w}, b)}{\partial b} \tag{13}
\end{equation*}
$$

