Machine Learning Approach

Hung Le

University of Victoria

January 29, 2019

Hung Le (University of Victoria)

Machine Learning Approach

January 29, 2019 1 / 23

< □ > < 同 > < 回 > < 回 > < 回 >

э

ML approach

- Most data mining algorithms try to summarize the data to help decision making.
- "Machine learning" algorithms not only summarize the data, but also provide a model to reason about future data.
 - Unsupervised learning: building a model from data without "label".
 - Supervised learning: building a model from data with labels.

Supervised Learning

Data is given as a set of pairs $\{\mathbf{x}, y\}$ where:

- **x** is a vector of *features*. Each feature could be *categorical* (such as {red, green, blue}) or *numerical*.
- y is the label. The value of y could be anything.

Supervised Learning

Data is given as a set of pairs $\{\mathbf{x}, y\}$ where:

- **x** is a vector of *features*. Each feature could be *categorical* (such as {red, green, blue}) or *numerical*.
- y is the label. The value of y could be anything.
 - If y is a real number \Rightarrow regression problem.
 - If y is a discrete value \Rightarrow classification problem.

Supervised Learning

Data is given as a set of pairs $\{\mathbf{x}, y\}$ where:

- **x** is a vector of *features*. Each feature could be *categorical* (such as {red, green, blue}) or *numerical*.
- y is the label. The value of y could be anything.
 - If y is a real number \Rightarrow regression problem.
 - If y is a discrete value \Rightarrow classification problem.

We typically split the data into two sets: a training set and a test set.

- The training set is used to train the model, i.e, find parameters of the model.
- The test set is used to test the performance of the trained model.

Why do we need to do so?

Let's start with (linear) regression.

3

• • • • • • • • • •

2

Linear Regression - A Motivating Example¹

Living area (feet ²)	Price (1000\$)
1204	400
1600	330
2400	369
1416	232
3000	540

 $^1\mathsf{From}$ Andrew Ng note http://cs229.stanford.edu/notes/cs229-notes1.pdf $_{\texttt{S}}$

Hung Le (University of Victoria)

Machine Learning Approach

Linear Regression - A Motivating Example

Hung Le (University of Victoria)

January 29, 2019 6 / 23

Linear Regression - A Motivating Example

< 1[™] >

Linear Regression - A Toy Example

Given four points (1, 2), (2, 1), (3, 4), (4, 3), find a line $y = a \cdot x + b$ that best fits these points.

Here best fit means the sum of squares of vertical off-sets is minimum:

$$f(a,b) = (a+b-2)^2 + (2a+b-1)^2 + (3a+b-4)^2 + (4a+b-3)^2$$
(1)

Optimization by solving equations

Solving Equation Approach

A (local) minimizer \mathbf{w}_0 of a differentiable function f(.) satisfies:

$$\nabla f(\mathbf{w}_0) = 0 \tag{2}$$

Recall that given a differentiable function:

$$\begin{aligned} f : \mathbb{R}^d &\to \mathbb{R} \\ \mathbf{w} &\mapsto f(\mathbf{w}) \end{aligned}$$
 (3)

Then:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial w_1} \\ \frac{\partial f}{\partial w_2} \\ \\ \\ \frac{\partial f}{\partial w_d} \end{bmatrix}$$
(4)

Back to our toy example

Find (a, b) that minimizes:

 $f(a,b) = (a+b-2)^2 + (2a+b-1)^2 + (3a+b-4)^2 + (4a+b-3)^2$

イロト 不得 トイヨト イヨト 二日

Back to our toy example

Find (a, b) that minimizes:

$$f(a,b) = (a+b-2)^2 + (2a+b-1)^2 + (3a+b-4)^2 + (4a+b-3)^2$$

$$rac{\partial f(a,b)}{\partial a} = 60a + 20b - 56$$
 $rac{\partial f(a,b)}{\partial b} = 20a + 8b - 20$

Solving $\nabla f(.) = 0$, we get a = 3/5, b = 1.

イロト 不得下 イヨト イヨト

- 34

You are given a set of *n* data points $\mathcal{D} = \{(\mathbf{x}_1, y_1), \mathbf{x}_2, y_y), \dots, (\mathbf{x}_n, y_n)\}$ where each $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. Find a hyperplane $y = \mathbf{w}^t \mathbf{x} + w_0$ such that:

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i - w_0)^2$$

is minimized.

Before we go into details of solving equations, we will "clean it up".

1st trick:

 add an extra dimension d + 1 and add 1 to each x_i in the new dimension so that x_i becomes x_i
 1.

 also w becomes w₀

 That implies: y = w^Tx + w₀ is equivalent to y = w^Tx in the new space.

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)$$
(5)

in the new space.

2nd trick: write $J(\mathbf{w})$ in matrix-vector notation:

3nd trick: traces and matrix derivatives.

• If
$$A = [A_{ij}]_{n \times n}$$
, then $\operatorname{Tr}(A = \sum_{i} A_{ii})$.

$$\operatorname{Tr}(a) = a \quad a \in \mathbb{R}$$

 $\operatorname{Tr}(aB) = a\operatorname{Tr}(B) \quad a \in \mathbb{R}$
 $\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$
 $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
 $\operatorname{Tr}(ABC) = \operatorname{Tr}(CAB)$

Hung Le (University of Victoria)

э

Image: A marked black

(8)

3nd trick: traces and matrix derivatives.

• If
$$A = [A_{ij}]_{n \times n}$$
, then $\operatorname{Tr}(A = \sum_{i} A_{ii}$.
 $\operatorname{Tr}(a) = a \quad a \in \mathbb{R}$
 $\operatorname{Tr}(aB) = a\operatorname{Tr}(B) \quad a \in \mathbb{R}$
 $\operatorname{Tr}(A + B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$
 $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
 $\operatorname{Tr}(ABC) = \operatorname{Tr}(CAB)$
(8)

$$\nabla_{A} \operatorname{Tr}(AB) = B^{T}$$

$$\nabla_{A} \operatorname{Tr}(ABA^{T}C) = CAB + C^{T}AB^{T}$$

$$\nabla_{A^{T}} f(A) = (\nabla_{A} f(A))^{T}$$
(9)

< 1 k

э

Apply the 3nd trick to $J(\mathbf{w})$:

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{X}\mathbf{w} - \mathbf{y})^{T} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$\Rightarrow \nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{X}^{T} \mathbf{X} \mathbf{w} - \mathbf{X}^{T} \mathbf{y}$$
 (10)

(See the board calculation)

< 1 k

э

Apply the 3nd trick to $J(\mathbf{w})$:

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{X}\mathbf{w} - \mathbf{y})^{T} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$\Rightarrow \nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{X}^{T} \mathbf{X} \mathbf{w} - \mathbf{X}^{T} \mathbf{y}$$
(10)

(See the board calculation) Solving $\nabla_{\mathbf{w}} J(\mathbf{w}) = 0$ (so-called the *normal equation*), we get:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T y) \tag{11}$$

Running time and memory?

Apply the 3nd trick to $J(\mathbf{w})$:

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{X}\mathbf{w} - \mathbf{y})^{T} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$\Rightarrow \nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{X}^{T} \mathbf{X} \mathbf{w} - \mathbf{X}^{T} \mathbf{y}$$
 (10)

(See the board calculation) Solving $\nabla_{\mathbf{w}} J(\mathbf{w}) = 0$ (so-called the *normal equation*), we get:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T y) \tag{11}$$

Running time and memory?

- Running time $O(d^3 + d^2n)$
- Memory: $O(d^2 + nd)$

3

Optimization by Gradient Descent

(12)

where $f : \mathbb{R}^d \to \mathbf{R}$ is differentiable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Optimization by Gradient Descent

minimize $f(\mathbf{x})$

(12)

where $f : \mathbb{R}^d \to \mathbf{R}$ is differentiable.

GRADIENTDESCENT(f(.)) initialize value for **w** randomly choose a small constant η **repeat** $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} f(\mathbf{w})$ **until** a chosen convergent criterion satisfied

(人間) トイヨト イヨト ニヨ

Back to Multivariate Linear Regression We have:

$$J(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \frac{1}{n} \mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y}$$

Note here that we add the factor $\frac{1}{n}$ to $J(\mathbf{w})$ to for numerical stability.

э

Back to Multivariate Linear Regression We have:

$$J(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \frac{1}{n} \mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y}$$

Note here that we add the factor $\frac{1}{n}$ to $J(\mathbf{w})$ to for numerical stability.

GRADIENTDESCENT(f(.)) initialize **w** randomly choose a small constant η repeat $\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta}{n} (\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y})$ until a chosen convergent criterion satisfied

Running time and memory?

Back to Multivariate Linear Regression We have:

$$J(\mathbf{w}) = \frac{1}{2n} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \frac{1}{n} \mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y}$$

Note here that we add the factor $\frac{1}{n}$ to $J(\mathbf{w})$ to for numerical stability.

GRADIENTDESCENT(f(.)) initialize **w** randomly choose a small constant η repeat $\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta}{n} (\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y})$ until a chosen convergent criterion satisfied

Running time and memory?

- Running time $O(Td^2n)$ where T is the number of updates.
- Memory: O(dn).

Hung Le (University of Victoria)

Let's look back to the original form of $J(\mathbf{w})$

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

< 4[™] ▶

э

Let's look back to the original form of $J(\mathbf{w})$

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

We have:

$$egin{aligned} rac{\partial J(\mathbf{w})}{\partial w_j} &= -rac{1}{n}\sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i [j] \ &= -rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i) \mathbf{x}_i [j] \end{aligned}$$

where $\hat{y}_i = \mathbf{w}^T \mathbf{x}_i$ is the predicted version of y_i .

< A > <

3

GRADIENTDESCENT(f(.)) initialize \mathbf{w}_0 randomly choose a small constant η repeat for $j \leftarrow 1$ to d + 1 $\mathbf{w}[j] \leftarrow \mathbf{w}[j] + \frac{\eta}{n} (\sum_{i=1}^n (y_i - \hat{y}_i) \mathbf{x}_i[j]$ until a chosen convergent criterion satisfied

Running time and memory and passes?

GRADIENTDESCENT(f(.)) initialize \mathbf{w}_0 randomly choose a small constant η repeat for $j \leftarrow 1$ to d + 1 $\mathbf{w}[j] \leftarrow \mathbf{w}[j] + \frac{\eta}{n} (\sum_{i=1}^n (y_i - \hat{y}_i) \mathbf{x}_i[j]$ until a chosen convergent criterion satisfied

Running time and memory and passes?

- Running time $O(Td^2n)$ where T is the number of updates.
- Memory: O(d).
- We pass through the data T times.

GRADIENTDESCENT(f(.)) initialize \mathbf{w}_0 randomly choose a small constant η repeat for $j \leftarrow 1$ to d + 1 $\mathbf{w}[j] \leftarrow \mathbf{w}[j] + \frac{\eta}{n} (\sum_{i=1}^n (y_i - \hat{y}_i) \mathbf{x}_i[j]$ until a chosen convergent criterion satisfied

Running time and memory and passes?

- Running time $O(Td^2n)$ where T is the number of updates.
- Memory: O(d).
- We pass through the data T times.

Question: Can we reduce T?

Let's look closer at $J(\mathbf{w})$

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Which can be written as:

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} L_{\mathbf{w}}(\mathbf{x}_i)$$

where $L_{\mathbf{w}}(\mathbf{x}_i) = (y_i - \mathbf{w}^T \mathbf{x}_i)^2$ which is the loss contributed by data point *i*. Thus, we can think of $J(\mathbf{w})$ as:

$$J(\mathbf{w}) = \mathrm{E}_{\mathbf{x} \sim \mathcal{D}}[L_{\mathbf{w}}(\mathbf{x})]$$

In short,

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} L_{\mathbf{w}}(\mathbf{x}_{i})$$

= $E_{\mathbf{x} \sim \mathcal{D}}[L_{\mathbf{w}}(\mathbf{x})]$ (13)

< □ > < 同 > < 回 > < 回 > < 回 >

2

In short,

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} L_{\mathbf{w}}(\mathbf{x}_i)$$

= $E_{\mathbf{x} \sim \mathcal{D}}[L_{\mathbf{w}}(\mathbf{x})]$ (13)

Suppose that you take *m* random samples $\mathbf{x}'_1, \ldots, \mathbf{x}'_m$ from \mathcal{D} and calculate:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} L_{\mathbf{w}}(\mathbf{x}'_i) \tag{14}$$

▶ < ∃ >

э

In short,

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} L_{\mathbf{w}}(\mathbf{x}_{i})$$

= $E_{\mathbf{x} \sim \mathcal{D}}[L_{\mathbf{w}}(\mathbf{x})]$ (13)

Suppose that you take *m* random samples $\mathbf{x}'_1, \ldots, \mathbf{x}'_m$ from \mathcal{D} and calculate:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} L_{\mathbf{w}}(\mathbf{x}'_i) \tag{14}$$

We have:

$$E[\mu] = \frac{1}{m} \sum_{i=1}^{m} E[L_{\mathbf{w}}(\mathbf{x}'_{i})] = \frac{1}{m} \sum_{i=1}^{m} E_{\mathbf{x} \sim \mathcal{D}}[L_{\mathbf{w}}(\mathbf{x})] = E_{\mathbf{x} \sim \mathcal{D}}[L_{\mathbf{w}}(\mathbf{x})]$$
(15)

3

- ∢ ⊒ →

< 47 ▶

SGD for Multivariate Linear Regression

Running time and memory and passes?

SGD for Multivariate Linear Regression

Running time and memory and passes?

- Running time $O(Td^2n)$ where T is the number of epoches.
- Memory: O(d) amd we pass through the data T times.
- The number of parameter updates is $T\frac{n}{m}$. In practice, $m = 2^r$ where $0 \le r \le 10$.

For very large data set, even $T \in [1, 20]$ suffices.

IN INAR

When to stop SGD?

There is no single good criteria as the stopping condition. Several choices are:

- Set a threshold T on the number of epochs.
- When the training loss is not reduced by much after several epochs.
- When the (batch) gradient is sufficiently smaller than a threshold.
- When validation error (require splitting data into {training, validation, testing}) is not reduced after several epochs.
- And many more².

²https://www.microsoft.com/en-us/research/publication/ stochastic-gradient-tricks/

Hung Le (University of Victoria)