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ML approach

Most data mining algorithms try to summarize the data to help
decision making.

“Machine learning” algorithms not only summarize the data, but also
provide a model to reason about future data.

I Unsupervised learning: building a model from data without “label”.
I Supervised learning: building a model from data with labels.
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Supervised Learning

Data is given as a set of pairs {x, y} where:

x is a vector of features. Each feature could be categorical (such as
{red, green, blue}) or numerical.

y is the label. The value of y could be anything.

I If y is a real number ⇒ regression problem.
I If y is a discrete value ⇒ classification problem.

We typically split the data into two sets: a training set and a test set.

The training set is used to train the model, i.e, find parameters of the
model.

The test set is used to test the performance of the trained model.

Why do we need to do so?
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Let’s start with (linear) regression.
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Linear Regression - A Motivating Example1

Living area (feet2) Price (1000$)

1204 400
1600 330
2400 369
1416 232
3000 540

1From Andrew Ng note http://cs229.stanford.edu/notes/cs229-notes1.pdf
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Linear Regression - A Toy Example

Given four points (1, 2), (2, 1), (3, 4), (4, 3), find a line y = a · x + b that
best fits these points.

Here best fit means the sum of squares of vertical off-sets is minimum:

f (a, b) = (a+ b− 2)2 + (2a+ b− 1)2 + (3a+ b− 4)2 + (4a+ b− 3)2 (1)
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Optimization by solving equations

Solving Equation Approach

A (local) minimizer w0 of a differentiable function f (.) satisfies:

∇f (w0) = 0 (2)

Recall that given a differentiable function:

f : Rd → R
w 7→ f (w)

(3)

Then:

∇f =


∂f /∂w1

∂f /∂w2

. . .
∂f /∂wd

 (4)
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Back to our toy example

Find (a, b) that minimizes:

f (a, b) = (a + b − 2)2 + (2a + b − 1)2 + (3a + b − 4)2 + (4a + b − 3)2

∂f (a, b)

∂a
= 60a + 20b − 56

∂f (a, b)

∂b
= 20a + 8b − 20

Solving ∇f (.) = 0, we get a = 3/5, b = 1.
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Multivariate Linear Regression

You are given a set of n data points D = {(x1, y1), x2, yy ), . . . , (xn, yn)}
where each xi ∈ Rd and yi ∈ R. Find a hyperplane y = wtx + w0 such
that:

J(w) =
1

2

n∑
i=1

(yi −wTxi − w0)2

is minimized.

Before we go into details of solving equations, we will “clean it up”.
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Multivariate Linear Regression

1st trick:

1 add an extra dimension d + 1 and add 1 to each xi in the new

dimension so that xi becomes

[
xi
1

]
.

2 also w becomes

[
w
w0

]
That implies: y = wTx + w0 is equivalent to y = wTx in the new space.

J(w) =
1

2

n∑
i=1

(yi −wTxi ) (5)

in the new space.
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Multivariate Linear Regression

2nd trick: write J(w) in matrix-vector notation:

X =


xT1
xT2
. . .
xTn

 (6)

J(w) =
1

2
(Xw − y)T (Xw − y) (7)
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Multivariate Linear Regression

3nd trick: traces and matrix derivatives.

If A = [Aij ]n×n, then Tr(A =
∑

i Aii .

Tr(a) = a a ∈ R
Tr(aB) = aTr(B) a ∈ R

Tr(A + B) = Tr(A) + Tr(B)

Tr(AB) = Tr(BA)

Tr(ABC ) = Tr(CAB)

(8)

∇ATr(AB) = BT

∇ATr(ABA
TC ) = CAB + CTABT

∇AT f (A) = (∇Af (A))T

(9)
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Multivariate Linear Regression

Apply the 3nd trick to J(w):

J(w) =
1

2
(Xw − y)T (Xw − y)

⇒ ∇wJ(w) = XTXw − XTy
(10)

(See the board calculation)

Solving ∇wJ(w) = 0 (so-called the normal equation), we get:

w = (XTX)−1(XT y) (11)

Running time and memory?

Running time O(d3 + d2n)

Memory: O(d2 + nd)
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Optimization by Gradient Descent

minimize f (x) (12)

where f : Rd → R is differentiable.

GradientDescent(f (.))
initialize value for w randomly
choose a small constant η
repeat

w← w − η∇wf (w)
until a chosen convergent criterion satisfied
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Back to Multivariate Linear Regression
We have:

J(w) =
1

2n
(Xw − y)T (Xw − y)

∇wJ(w) =
1

n
XTXw − XTy

Note here that we add the factor 1
n to J(w) to for numerical stability.

GradientDescent(f (.))
initialize w randomly
choose a small constant η
repeat

w← w − η
n (XTXw − XTy)

until a chosen convergent criterion satisfied

Running time and memory?

Running time O(Td2n) where T is the number of updates.

Memory: O(dn).
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Multivariate Linear Regression

Let’s look back to the original form of J(w)

J(w) =
1

2n

n∑
i=1

(yi −wTxi )
2

We have:

∂J(w)

∂wj
= −1

n

n∑
i=1

(yi −wTxi )xi [j ]

= −1

n

n∑
i=1

(yi − ŷi )xi [j ]

where ŷi = wTxi is the predicted version of yi .
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Multivariate Linear Regression

GradientDescent(f (.))
initialize w0 randomly
choose a small constant η
repeat

for j ← 1 to d + 1
w[j ]← w[j ] + η

n (
∑n

i=1(yi − ŷi )xi [j ]
until a chosen convergent criterion satisfied

Running time and memory and passes?

Running time O(Td2n) where T is the number of updates.

Memory: O(d).

We pass through the data T times.

Question: Can we reduce T?
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Stochastic Gradient Descent

Let’s look closer at J(w)

J(w) =
1

2n

n∑
i=1

(yi −wTxi )
2

Which can be written as:

J(w) =
1

n

n∑
i=1

Lw(xi )

where Lw(xi ) = (yi −wTxi )
2 which is the loss contributed by data point i .

Thus, we can think of J(w) as:

J(w) = Ex∼D[Lw(x)]
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Stochastic Gradient Descent

In short,

J(w) =
1

n

n∑
i=1

Lw(xi )

= Ex∼D[Lw(x)]

(13)

Suppose that you take m random samples x′1, . . . , x
′
m from D and

calculate:

µ =
1

m

m∑
i=1

Lw(x′i ) (14)

We have:

E [µ] =
1

m

m∑
i=1

E [Lw(x′i )] =
1

m

m∑
i=1

Ex∼D[Lw(x)] = Ex∼D[Lw(x)] (15)
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SGD for Multivariate Linear Regression

StochasticGradientDescent(f (.))
initialize w0 randomly
choose a small constant η
choose m
repeat

Divide the data set into n
m random parts of size m

for each part Di

for j ← 1 to d + 1
w[j ]← w[j ] + η

m (
∑

xp∈Di
(yp − ŷp)xp[j ])

until a chosen convergent criterion satisfied

Running time and memory and passes?

Running time O(Td2n) where T is the number of epoches.

Memory: O(d) amd we pass through the data T times.

The number of parameter updates is T n
m . In practice, m = 2r where

0 ≤ r ≤ 10.

For very large data set, even T ∈ [1, 20] suffices.

Hung Le (University of Victoria) Machine Learning Approach January 29, 2019 22 / 23



SGD for Multivariate Linear Regression

StochasticGradientDescent(f (.))
initialize w0 randomly
choose a small constant η
choose m
repeat

Divide the data set into n
m random parts of size m

for each part Di

for j ← 1 to d + 1
w[j ]← w[j ] + η

m (
∑

xp∈Di
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When to stop SGD?

There is no single good criteria as the stopping condition. Several choices
are:

Set a threshold T on the number of epochs.

When the training loss is not reduced by much after several epochs.

When the (batch) gradient is sufficiently smaller than a threshold.

When validation error (require splitting data into {training, validation,
testing}) is not reduced after several epochs.

And many more2.

2https://www.microsoft.com/en-us/research/publication/

stochastic-gradient-tricks/
Hung Le (University of Victoria) Machine Learning Approach January 29, 2019 23 / 23

https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/

	FAQ
	Linear Regression
	Normal Equation
	Gradient Descent
	SGD


