
Frequent Itemsets

Hung Le

University of Victoria

February 6, 2019

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 1 / 28

Misc

PA1 due by Jan 28, 2019 11:55 pm

HW1 due by Jan 30, 2019 10:00 am (turn in a hard copy in class).

For PA1, you don’t need to use advanced text processing, i.e, upper
case to lower case, remove stop words, remove question mark. Just
break a sentence into words by breaking spaces is ok.

I DO NOT expect you to use complicated subroutine like threading,
parallelism to speed up the program.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 2 / 28

Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I) ≥ s.

Support of an itemset I , denoted by Support(I), is the number of baskets
that contains all items in I .

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

Support({Brerad ,Milk}) = 3

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 3 / 28

Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I) ≥ s.

Support of an itemset I , denoted by Support(I), is the number of baskets
that contains all items in I .

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

Support({Brerad ,Milk}) = 3

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 3 / 28

Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I) ≥ s.

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

If we set s = 3, then frequent itemsets:

of size 1 are: {Bread}, {Milk}, {Beer}, {Diapers}.
of size 2 are: {Bread, Milk}, {Beer, Diapers}

There is no frequent itemset of size at least 3.
Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 4 / 28

Applications

Discover surprising relationships such as {Beer, Diapers}1.

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

1See the history at: https://tdwi.org/articles/2016/11/15/
beer-and-diapers-impossible-correlation.aspx
Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 5 / 28

https://tdwi.org/articles/2016/11/15/beer-and-diapers-impossible-correlation.aspx
https://tdwi.org/articles/2016/11/15/beer-and-diapers-impossible-correlation.aspx

Applications

Detecting plagiarism.

“Baskets” are sentences.

“Items” are documents.

Two documents “appear” together in many sentences indicates plagiarism.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 6 / 28

Applications

Online vs Brick-and-Mortar Retailing

Online store: if you bought something, they can immediately
recommend other items to buy.

Brick-and-Mortar store: put items in frequent itemsets close to each
other on the shelves.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 7 / 28

Association Rule Mining

Rules of the form I → j , often is interpreted as if people buy I , they will
likely buy j as well.

Confidence of a rule:

Conf[I → j] =
Support(I ∪ {j})

Support(I)
(1)

We typically interested in rules where Support(I) ≥ s.

Interest of a rule:

Interest[I → j] = Conf [I → j]− |Support({j})|
|B|

(2)

We are typically interested in rules that have positive interest.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 8 / 28

Association Rule Mining

Rules of the form I → j , often is interpreted as if people buy I , they will
likely buy j as well.

Confidence of a rule:

Conf[I → j] =
Support(I ∪ {j})

Support(I)
(1)

We typically interested in rules where Support(I) ≥ s.

Interest of a rule:

Interest[I → j] = Conf [I → j]− |Support({j})|
|B|

(2)

We are typically interested in rules that have positive interest.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 8 / 28

Association Rule Mining

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

Association rule: {Beer ,Diapers} → Bread .

Conf({Beer ,Diapers} → Bread) = Support({Beer ,Diapers,Bread})
Support({Beer ,Diapers}) = 2

3

Interest({Beer ,Diapers} → Bread) = 2
3 −

4
5 < 0

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 9 / 28

Association Rule Mining

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

Association rule: {Beer ,Diapers} → Bread .

Conf({Beer ,Diapers} → Bread) = Support({Beer ,Diapers,Bread})
Support({Beer ,Diapers}) = 2

3

Interest({Beer ,Diapers} → Bread) = 2
3 −

4
5 < 0

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 9 / 28

Finding Association Rules

Suppose that we are interested in rules that have confidence at least 0.5.

Lemma

If Support(I) ≥ s and Conf(I → j) ≥ 0.5, then Support(I ∪ {j}) ≥ s/2

FindAssocRules(B, U, s)
I ← FrequentItemset(s/2)
for each itemset I ∈ I

T [I]← Support(I). // a hash table

for each J ∈ I
for each j ∈ J

I ← J \ {j}
c ← T [J]

T [I] // the confidence, J = I ∪ {j}
Report I → j if c ≥ 0.5.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 10 / 28

Finding Association Rules

Suppose that we are interested in rules that have confidence at least 0.5.

Lemma

If Support(I) ≥ s and Conf(I → j) ≥ 0.5, then Support(I ∪ {j}) ≥ s/2

FindAssocRules(B, U, s)
I ← FrequentItemset(s/2)
for each itemset I ∈ I

T [I]← Support(I). // a hash table

for each J ∈ I
for each j ∈ J

I ← J \ {j}
c ← T [J]

T [I] // the confidence, J = I ∪ {j}
Report I → j if c ≥ 0.5.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 10 / 28

Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I) ≥ s.

Some points:

The number of distinct subsets of U is 2n where n = |U|, so in the
worst case the number of “frequent” itemsets is 2n. (When does this
happen?)

Keep in mind that in reality, s is set appropriately so that the number
of frequent itemsets is not too large. Typically, s = 1% to 10% of the
number of baskets.

Ideally, we would like an algorithm that has running time and memory
requirement linear to the number of frequent itemsets in the database.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 11 / 28

Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I) ≥ s.

Some points:

The number of distinct subsets of U is 2n where n = |U|, so in the
worst case the number of “frequent” itemsets is 2n. (When does this
happen?)

Keep in mind that in reality, s is set appropriately so that the number
of frequent itemsets is not too large. Typically, s = 1% to 10% of the
number of baskets.

Ideally, we would like an algorithm that has running time and memory
requirement linear to the number of frequent itemsets in the database.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 11 / 28

Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all itemsets I such that
Support(I) ≥ s.

With very big data, we can’t feed all the data to the memory. Thus, we
would like an algorithm that:

passes through the data few times, because reading data from hard
disks is very slow.

minimizes the memory usage.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 12 / 28

A Simplification: Frequent Items

Frequent Item Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all items i ∈ U such
that Support({i}) ≥ s.

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Use a hash table or an array (in case all items are indexed from 1 to |U|)
to implement Support[.].

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 13 / 28

A Simplification: Frequent Items

Frequent Item Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all items i ∈ U such
that Support({i}) ≥ s.

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Use a hash table or an array (in case all items are indexed from 1 to |U|)
to implement Support[.].

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 13 / 28

A Simplification: Frequent Items

Frequent Item Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all items i ∈ U such
that Support({i}) ≥ s.

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Use a hash table or an array (in case all items are indexed from 1 to |U|)
to implement Support[.].

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 13 / 28

A Simplification: Frequent Items

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Q: How many passes does the algorithm make?

I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ n + Size(U) bits where n = |U|, assuming that a counter

of 32 bits suffices to count the frequency of any item, where Size(U)
is the number of bits in representing items in U.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 14 / 28

A Simplification: Frequent Items

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Q: How many passes does the algorithm make?
I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ n + Size(U) bits where n = |U|, assuming that a counter

of 32 bits suffices to count the frequency of any item, where Size(U)
is the number of bits in representing items in U.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 14 / 28

A Simplification: Frequent Items

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Q: How many passes does the algorithm make?
I A: One pass.

Q: How much memory does the algorithm use?

I Roughly 32 ∗ n + Size(U) bits where n = |U|, assuming that a counter
of 32 bits suffices to count the frequency of any item, where Size(U)
is the number of bits in representing items in U.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 14 / 28

A Simplification: Frequent Items

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s.

Output {i}.

Q: How many passes does the algorithm make?
I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ n + Size(U) bits where n = |U|, assuming that a counter

of 32 bits suffices to count the frequency of any item, where Size(U)
is the number of bits in representing items in U.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 14 / 28

Frequent Itempairs

Frequent Itempair Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all pairs of elements
{i , j} ⊆ U such that Support({i , j}) ≥ s.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 15 / 28

Frequent Itempairs

FrequentItempair(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Q: How many passes does the algorithm make?

I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ |P|+ Size(P) bits where P is the iset of tempairs that

have non-zero support.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 16 / 28

Frequent Itempairs

FrequentItempair(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Q: How many passes does the algorithm make?
I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ |P|+ Size(P) bits where P is the iset of tempairs that

have non-zero support.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 16 / 28

Frequent Itempairs

FrequentItempair(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Q: How many passes does the algorithm make?
I A: One pass.

Q: How much memory does the algorithm use?

I Roughly 32 ∗ |P|+ Size(P) bits where P is the iset of tempairs that
have non-zero support.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 16 / 28

Frequent Itempairs

FrequentItempair(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Q: How many passes does the algorithm make?
I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ |P|+ Size(P) bits where P is the iset of tempairs that

have non-zero support.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 16 / 28

Frequent Itempairs : One more pass, fewer memory

Observation

If Support({i , j}) ≥ s, then Support(i) ≥ s and Supoprt(j) ≥ s.

FrequentItempair(B, U, s)
L1 ← FrequentItem(B, U, s) // a hash table

for each basket B in B
for each pair of items {i , j} ∈ B s.t both i , j ∈ L1

Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The algorithm makes two passes.

The memory is roughly Size(|L1|) + |32 ∗ |C1|+ Size(C1) where C1

is set of candidate itempairs. An itempair is a candidate if its items
are frequent. We can expect C1 � P.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 17 / 28

Frequent Itempairs : One more pass, fewer memory

Observation

If Support({i , j}) ≥ s, then Support(i) ≥ s and Supoprt(j) ≥ s.

FrequentItempair(B, U, s)
L1 ← FrequentItem(B, U, s) // a hash table

for each basket B in B
for each pair of items {i , j} ∈ B s.t both i , j ∈ L1

Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The algorithm makes two passes.

The memory is roughly Size(|L1|) + |32 ∗ |C1|+ Size(C1) where C1

is set of candidate itempairs. An itempair is a candidate if its items
are frequent. We can expect C1 � P.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 17 / 28

Frequent Itempairs : One more pass, fewer memory

Observation

If Support({i , j}) ≥ s, then Support(i) ≥ s and Supoprt(j) ≥ s.

FrequentItempair(B, U, s)
L1 ← FrequentItem(B, U, s) // a hash table

for each basket B in B
for each pair of items {i , j} ∈ B s.t both i , j ∈ L1

Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The algorithm makes two passes.

The memory is roughly Size(|L1|) + |32 ∗ |C1|+ Size(C1) where C1

is set of candidate itempairs. An itempair is a candidate if its items
are frequent. We can expect C1 � P.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 17 / 28

Frequent Itemset of size k

Observation (Monotonicity Principle)

If Support(I) ≥ s, then for any subset J ⊆ I , Support(J) ≥ s.

FrequentItemset(B,U, s, k)
Lk−1 ← FrequentItemset(B,U, s, k − 1) // a hash table

for each basket B in B
for each k-subset I ⊆ B

if every (k − 1)-subset J of I is in Lk−1
Support[I]← Support[I] + 1
if Support[I] ≥ s

Output I .

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 18 / 28

Frequent Itemset of size k

Observation (Monotonicity Principle)

If Support(I) ≥ s, then for any subset J ⊆ I , Support(J) ≥ s.

FrequentItemset(B,U, s, k)
Lk−1 ← FrequentItemset(B,U, s, k − 1) // a hash table

for each basket B in B
for each k-subset I ⊆ B

if every (k − 1)-subset J of I is in Lk−1
Support[I]← Support[I] + 1
if Support[I] ≥ s

Output I .

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 18 / 28

Frequent Itemset of size k

Schematically, the algorithm looks like the following:

The algorithm makes k passes.

Memory Size(Lk−1) + 32|Ck |+ Size(Ck) where Ck is the set of
candidate itemsets of size k .

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 19 / 28

Frequent Itemset of size k

Schematically, the algorithm looks like the following:

The algorithm makes k passes.

Memory Size(Lk−1) + 32|Ck |+ Size(Ck) where Ck is the set of
candidate itemsets of size k .

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 19 / 28

Limited Memory

Recall:

FrequentItempair(B, U, s)
L1 ← FrequentItem(B, U, s) // a hash table

for each basket B in B
for each pair of items {i , j} ∈ B s.t both i , j ∈ L1

Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The memory is roughly Size(L1) + 32 ∗ |C1|+ Size(C1) where C1 is
set of candidate itempairs. An itempair is a candidate if its items are
frequent. We want to reduce C1 further.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 20 / 28

Park-Chen-Yu Algorithm
1st pass:

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i]← Support[i] + 1
if Support[i] ≥ s

Put i to L1
CountMap ← ∅ of m slots
for each pair of items i , j ∈ B

h← hash(i , j)
CountMap[h]← CountMap[h] + 1

BitMap ← ∅ of size m
for h← 1 to m

if CountMap[h] ≥ s BitMap[h]← 1
else BitMap[h]← 0

return L1[.],BitMap[.]

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 21 / 28

Park-Chen-Yu Algorithm
2nd pass:

FrequentItempair(B, U, s)
L1[.],BitMap[.]← FrequentItem(B, U, s) //from 1st pass

for each basket B in B
for each pair of items {i , j} ∈ B

if both i , j ∈ L1 and BitMap[hash({i , j})] = 1
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The memory is roughly Size(L1) + m + 32 ∗ |C ′1|+ Size(C ′1) where
C ′1 is set of candidate itempairs. An itempair is a candidate if its
items are frequent and the location of the pair in the BitMap is 1.
Obviously C ′1 < C1.

How can we reduce C ′1 further?

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 22 / 28

MultiStage: More passes, more BitMaps, less candidates
1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass:

ConstructMaps(B, U, s)
L1[.],BitMap1[.]← FrequentItem(B, U, s) //from 1st pass

CountMap ← ∅ of m slots
for each basket B in B

for each pair of items {i , j} ∈ B
if both i , j ∈ L1 and BitMap1[hash({i , j})] = 1

h← hash2({i , j}) //a different hash function

CountMap[h]← CountMap[h] + 1
BitMap2 ← ∅ of size m
for h← 1 to m

if CountMap[h] ≥ s BitMap2[h]← 1
else BitMap2[h]← 0

return L1[.],BitMap1[.],BitMap2[.]

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 23 / 28

MultiStage: More passes, more BitMaps, less candidates
1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]
2nd pass:

ConstructMaps(B, U, s)
L1[.],BitMap1[.]← FrequentItem(B, U, s) //from 1st pass

CountMap ← ∅ of m slots
for each basket B in B

for each pair of items {i , j} ∈ B
if both i , j ∈ L1 and BitMap1[hash({i , j})] = 1

h← hash2({i , j}) //a different hash function

CountMap[h]← CountMap[h] + 1
BitMap2 ← ∅ of size m
for h← 1 to m

if CountMap[h] ≥ s BitMap2[h]← 1
else BitMap2[h]← 0

return L1[.],BitMap1[.],BitMap2[.]

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 23 / 28

MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass:

FrequentItempair(B, U, s)
L1[.],BitMap[.],BitMap2[.]← ConstructMaps(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
if both i , j ∈ L1 and BitMap1[hash1({i , j})] = 1

and BitMap2[hash2({i , j})] = 1
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 24 / 28

MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass:

FrequentItempair(B, U, s)
L1[.],BitMap[.],BitMap2[.]← ConstructMaps(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
if both i , j ∈ L1 and BitMap1[hash1({i , j})] = 1

and BitMap2[hash2({i , j})] = 1
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 24 / 28

MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass: check both BitMaps for a candidate pair.

The memory is roughly Size(L1) + 2m + 32 ∗ |C ′′1 |+ Size(C ′′1) where
C ′′1 is set of candidate itempairs. An itempair is a candidate if its
items are frequent and the location of the pair in both BitMaps is 1.
Obviously C ′′1 < C ′1.

How can we reduce C ′′1 further? More passes, more BitMaps.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 25 / 28

MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass: check both BitMaps for a candidate pair.

The memory is roughly Size(L1) + 2m + 32 ∗ |C ′′1 |+ Size(C ′′1) where
C ′′1 is set of candidate itempairs. An itempair is a candidate if its
items are frequent and the location of the pair in both BitMaps is 1.
Obviously C ′′1 < C ′1.

How can we reduce C ′′1 further? More passes, more BitMaps.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 25 / 28

MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass: check both BitMaps for a candidate pair.

The memory is roughly Size(L1) + 2m + 32 ∗ |C ′′1 |+ Size(C ′′1) where
C ′′1 is set of candidate itempairs. An itempair is a candidate if its
items are frequent and the location of the pair in both BitMaps is 1.
Obviously C ′′1 < C ′1.

How can we reduce C ′′1 further? More passes, more BitMaps.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 25 / 28

Limited-Pass Algorithm

What if:

Your data is too big and I-O is very slow?

It is OK to find most (but not all) frequent itemsets.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 26 / 28

Limited-Pass Algorithm

Idea: sample a p fraction of the dataset, say p = 1%, and find the
frequent itemset in the sample with threshold p · s. You can expect that
your sample, say S, can fit into the main memory.

Frequent itemset in S is not frequent in B: false positive.

Frequent itemset in B is not frequent in S: false negative.

Reducing error:

Reduce false positive by using one extra pass through the data: count
support of all frequent itemsets discovered in the sample.

Reduce false negative by lowing the threshold for the sample set:
instead of p · s, we use a smaller threshold, say 0.9p · s.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 27 / 28

Limited-Pass Algorithm

Idea: sample a p fraction of the dataset, say p = 1%, and find the
frequent itemset in the sample with threshold p · s. You can expect that
your sample, say S, can fit into the main memory.

Frequent itemset in S is not frequent in B: false positive.

Frequent itemset in B is not frequent in S: false negative.

Reducing error:

Reduce false positive by using one extra pass through the data: count
support of all frequent itemsets discovered in the sample.

Reduce false negative by lowing the threshold for the sample set:
instead of p · s, we use a smaller threshold, say 0.9p · s.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 27 / 28

Limited-Pass Algorithm

Idea: sample a p fraction of the dataset, say p = 1%, and find the
frequent itemset in the sample with threshold p · s. You can expect that
your sample, say S, can fit into the main memory.

Frequent itemset in S is not frequent in B: false positive.

Frequent itemset in B is not frequent in S: false negative.

Reducing error:

Reduce false positive by using one extra pass through the data: count
support of all frequent itemsets discovered in the sample.

Reduce false negative by lowing the threshold for the sample set:
instead of p · s, we use a smaller threshold, say 0.9p · s.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 27 / 28

Limited-Pass Algorithm

Idea: sample a p fraction of the dataset, say p = 1%, and find the
frequent itemset in the sample with threshold p · s. You can expect that
your sample, say S, can fit into the main memory.

Frequent itemset in S is not frequent in B: false positive.

Frequent itemset in B is not frequent in S: false negative.

Reducing error:

Reduce false positive by using one extra pass through the data: count
support of all frequent itemsets discovered in the sample.

Reduce false negative by lowing the threshold for the sample set:
instead of p · s, we use a smaller threshold, say 0.9p · s.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 27 / 28

Savasere-Omiecinski-Navathe Algorithm

Idea: randomly split the dataset into 1
p disjoint parts, each part of size p

fraction of the whole dataset. A frequent threshold p · s is set for each
part. Find all itemsets that are frequent in at least one part.

No false negative: if the itemset is not frequent in any part, then it is
infrequent in the whole dataset. (Why?)

False positive: using one extra pass through the data.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 28 / 28

Savasere-Omiecinski-Navathe Algorithm

Idea: randomly split the dataset into 1
p disjoint parts, each part of size p

fraction of the whole dataset. A frequent threshold p · s is set for each
part. Find all itemsets that are frequent in at least one part.

No false negative: if the itemset is not frequent in any part, then it is
infrequent in the whole dataset. (Why?)

False positive: using one extra pass through the data.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 28 / 28

Savasere-Omiecinski-Navathe Algorithm

Idea: randomly split the dataset into 1
p disjoint parts, each part of size p

fraction of the whole dataset. A frequent threshold p · s is set for each
part. Find all itemsets that are frequent in at least one part.

No false negative: if the itemset is not frequent in any part, then it is
infrequent in the whole dataset. (Why?)

False positive: using one extra pass through the data.

Hung Le (University of Victoria) Frequent Itemsets February 6, 2019 28 / 28

	FAQ
	Problem statement
	A-Priori algorithm
	Less memory consumption
	Limited-Pass Algorithm

