Frequent Itemsets

Hung Le

University of Victoria

February 6, 2019

< E

э

Misc

- PA1 due by Jan 28, 2019 11:55 pm
- HW1 due by Jan 30, 2019 10:00 am (turn in a hard copy in class).
- For PA1, you don't need to use advanced text processing, i.e, upper case to lower case, remove stop words, remove question mark. Just break a sentence into words by breaking spaces is ok.
- I DO NOT expect you to use complicated subroutine like threading, parallelism to speed up the program.

Frequent Itemset Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *U* and a threshold *s*. Find all itemsets *I* such that $\text{Support}(I) \ge s$.

Support of an itemset I, denoted by Support(I), is the number of baskets that contains all items in I.

Frequent Itemset Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *U* and a threshold *s*. Find all itemsets *I* such that $\text{Support}(I) \ge s$.

Support of an itemset I, denoted by Support(I), is the number of baskets that contains all items in I.

Baskets	ltems
1	{Bread,Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread,Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

 $\texttt{Support}(\{\textit{Brerad},\textit{Milk}\}) = 3$

Frequent Itemset Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *U* and a threshold *s*. Find all itemsets *I* such that $\operatorname{Support}(I) \geq s$.

Baskets	ltems
1	{Bread,Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread,Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

If we set s = 3, then frequent itemsets:

- of size 1 are: {Bread}, {Milk}, {Beer}, {Diapers}.
- of size 2 are: {Bread, Milk}, {Beer, Diapers}

There is no frequent itemset of size at least 3.

Applications

Discover surprising relationships such as $\{\text{Beer, Diapers}\}^1$.

Baskets	Items
1	{Bread,Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread,Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

¹See the history at: https://tdwi.org/articles/2016/11/15/ beer-and-diapers-impossible-correlation.aspx (D) (C)

Hung Le (University of Victoria)

Frequent Itemsets

Applications

Detecting plagiarism.

- "Baskets" are sentences.
- "Items" are documents.

Two documents "appear" together in many sentences indicates plagiarism.

A 🖓

Applications

Online vs Brick-and-Mortar Retailing

- Online store: if you bought something, they can immediately recommend other items to buy.
- Brick-and-Mortar store: put items in frequent itemsets close to each other on the shelves.

Rules of the form $I \rightarrow j$, often is interpreted as if people buy I, they will likely buy j as well.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Rules of the form $I \rightarrow j$, often is interpreted as if people buy I, they will likely buy j as well.

• Confidence of a rule:

$$\operatorname{Conf}[I \to j] = \frac{\operatorname{Support}(I \cup \{j\})}{\operatorname{Support}(I)} \tag{1}$$

We typically interested in rules where $\text{Support}(I) \ge s$. • Interest of a rule:

$$\texttt{Interest}[I \to j] = Conf[I \to j] - \frac{|\texttt{Support}(\{j\})|}{|\mathcal{B}|} \tag{2}$$

We are typically interested in rules that have positive interest.

(日) (四) (日) (日) (日)

Baskets	Items
1	{Bread,Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread,Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Association rule: $\{Beer, Diapers\} \rightarrow Bread$.

< □ > < 同 > < 回 > < 回 > < 回 >

э

Baskets	Items
1	{Bread,Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread,Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Association rule: $\{Beer, Diapers\} \rightarrow Bread$.

• Conf({Beer, Diapers} \rightarrow Bread) = $\frac{\text{Support}(\{\text{Beer, Diapers, Bread}\})}{\text{Support}(\{\text{Beer, Diapers}\})} = \frac{2}{3}$

• Interest({Beer, Diapers} \rightarrow Bread) = $\frac{2}{3} - \frac{4}{5} < 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finding Association Rules

Suppose that we are interested in rules that have confidence at least 0.5.

Lemma

If $\texttt{Support}(I) \geq s$ and $\texttt{Conf}(I \rightarrow j) \geq 0.5$, then $\texttt{Support}(I \cup \{j\}) \geq s/2$

- 4 回 ト 4 三 ト 4 三

Finding Association Rules

Suppose that we are interested in rules that have confidence at least 0.5.

Lemma

If $\texttt{Support}(I) \geq s$ and $\texttt{Conf}(I \rightarrow j) \geq 0.5$, then $\texttt{Support}(I \cup \{j\}) \geq s/2$

```
\begin{split} & \text{FINDASSOCRULES}(\mathcal{B}, \ U, \ s) \\ & \mathcal{I} \leftarrow \text{FREQUENTITEMSET}(s/2) \\ & \text{for each itemset } l \in \mathcal{I} \\ & \mathcal{T}[l] \leftarrow \text{Support}(l). \quad // \text{ a hash table} \\ & \text{for each } J \in \mathcal{I} \\ & \text{for each } j \in \mathcal{J} \\ & I \leftarrow J \setminus \{j\} \\ & c \leftarrow \frac{\mathcal{T}[J]}{\mathcal{T}[l]} \quad // \text{ the confidence, } J = I \cup \{j\} \\ & \text{Report } I \rightarrow j \text{ if } c \geq 0.5. \end{split}
```

イロト 不得下 イヨト イヨト 二日

Frequent Itemset Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *U* and a threshold *s*. Find all itemsets *I* such that $\text{Support}(I) \ge s$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Frequent Itemset Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *U* and a threshold *s*. Find all itemsets *I* such that $\text{Support}(I) \ge s$.

Some points:

- The number of distinct subsets of U is 2^n where n = |U|, so in the worst case the number of "frequent" itemsets is 2^n . (When does this happen?)
- Keep in mind that in reality, s is set appropriately so that the number of frequent itemsets is not too large. Typically, s = 1% to 10% of the number of baskets.
- Ideally, we would like an algorithm that has running time and memory requirement linear to the number of frequent itemsets in the database.

< □ > < □ > < □ > < □ > < □ > < □ >

Frequent Itemset Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *O* and a threshold *s*. Find all itemsets *I* such that $\text{Support}(I) \ge s$.

With very big data, we can't feed all the data to the memory. Thus, we would like an algorithm that:

- passes through the data few times, because reading data from hard disks is very slow.
- minimizes the memory usage.

Frequent Item Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *O* and a threshold *s*. Find all items $i \in U$ such that $\text{Support}(\{i\}) \geq s$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Frequent Item Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \dots, B_m\}$, each contains a set of items from a ground set *O* and a threshold *s*. Find all items $i \in U$ such that $\text{Support}(\{i\}) \geq s$.

```
\begin{aligned} & \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each item } i \in B \\ & \text{Support}[i] \leftarrow \text{Support}[i] + 1 \\ & \text{if } \text{Support}[i] \geq s. \\ & \text{Output } \{i\}. \end{aligned}
```

Frequent Item Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \dots, B_m\}$, each contains a set of items from a ground set *O* and a threshold *s*. Find all items $i \in U$ such that $\text{Support}(\{i\}) \geq s$.

```
\begin{aligned} & \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each item } i \in B \\ & \text{Support}[i] \leftarrow \text{Support}[i] + 1 \\ & \text{if } \text{Support}[i] \geq s. \\ & \text{Output } \{i\}. \end{aligned}
```

Use a hash table or an array (in case all items are indexed from 1 to |U|) to implement Support[.].

< □ > < □ > < □ > < □ > < □ > < □ >

```
\begin{aligned} & \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each item } i \in B \\ & \text{Support}[i] \leftarrow \text{Support}[i] + 1 \\ & \text{if } \text{Support}[i] \geq s. \\ & \text{Output } \{i\}. \end{aligned}
```

• Q: How many passes does the algorithm make?

```
\begin{aligned} & \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each item } i \in B \\ & \text{Support}[i] \leftarrow \text{Support}[i] + 1 \\ & \text{if } \text{Support}[i] \geq s. \\ & \text{Output } \{i\}. \end{aligned}
```

• Q: How many passes does the algorithm make?

A: One pass.

```
\begin{aligned} & \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each item } i \in B \\ & \text{Support}[i] \leftarrow \text{Support}[i] + 1 \\ & \text{if } \text{Support}[i] \geq s. \\ & \text{Output } \{i\}. \end{aligned}
```

• Q: How many passes does the algorithm make?

A: One pass.

• Q: How much memory does the algorithm use?

```
\begin{aligned} & \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each item } i \in B \\ & \text{Support}[i] \leftarrow \text{Support}[i] + 1 \\ & \text{if } \text{Support}[i] \geq s. \\ & \text{Output } \{i\}. \end{aligned}
```

- Q: How many passes does the algorithm make?
 - A: One pass.
- Q: How much memory does the algorithm use?
 - Roughly 32 * n + Size(U) bits where n = |U|, assuming that a counter of 32 bits suffices to count the frequency of any item, where Size(U) is the number of bits in representing items in U.

Frequent Itempair Problem

Given a set of *m* baskets $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$, each contains a set of items from a ground set *O* and a threshold *s*. Find all pairs of elements $\{i, j\} \subseteq U$ such that $\texttt{Support}(\{i, j\}) \geq s$.

 $\begin{aligned} & \text{FREQUENTITEMPAIR}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{ for each pair of items } \{i, j\} \in B \\ & \text{ Support}[\{i, j\}] \leftarrow \text{ Support}[\{i, j\}] + 1 \\ & \text{ if } \text{ Support}[\{i, j\}] \geq s. \\ & \text{ Output } \{i, j\}. \end{aligned}$

• Q: How many passes does the algorithm make?

 $\begin{aligned} & \text{FREQUENTITEMPAIR}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{ for each pair of items } \{i, j\} \in B \\ & \text{ Support}[\{i, j\}] \leftarrow \text{ Support}[\{i, j\}] + 1 \\ & \text{ if } \text{ Support}[\{i, j\}] \geq s. \\ & \text{ Output } \{i, j\}. \end{aligned}$

- Q: How many passes does the algorithm make?
 - A: One pass.

 $\begin{aligned} & \text{FREQUENTITEMPAIR}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each pair of items } \{i, j\} \in B \\ & \text{Support}[\{i, j\}] \leftarrow \text{Support}[\{i, j\}] + 1 \\ & \text{if Support}[\{i, j\}] \geq s. \\ & \text{Output } \{i, j\}. \end{aligned}$

- Q: How many passes does the algorithm make?
 - A: One pass.
- Q: How much memory does the algorithm use?

 $\begin{aligned} & \text{FREQUENTITEMPAIR}(\mathcal{B}, \ U, \ s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each pair of items } \{i, j\} \in B \\ & \text{Support}[\{i, j\}] \leftarrow \text{Support}[\{i, j\}] + 1 \\ & \text{if Support}[\{i, j\}] \geq s. \\ & \text{Output } \{i, j\}. \end{aligned}$

- Q: How many passes does the algorithm make?
 - A: One pass.
- Q: How much memory does the algorithm use?
 - Roughly 32 * |P| + Size(P) bits where P is the iset of tempairs that have non-zero support.

Frequent Itempairs : One more pass, fewer memory

Observation

If $\texttt{Support}(\{i, j\}) \geq s$, then $\texttt{Support}(i) \geq s$ and $\texttt{Supoprt}(j) \geq s$.

イロト イポト イヨト イヨト 二日

Frequent Itempairs : One more pass, fewer memory

Observation

 $\textit{If } \texttt{Support}(\{i,j\}) \geq \textit{s, then } \texttt{Support}(i) \geq \textit{s and } \texttt{Suport}(j) \geq \textit{s}.$

 $\begin{aligned} & \operatorname{FrequentItemPAIR}(\mathcal{B}, \ U, \ s) \\ & \mathcal{L}_1 \leftarrow \operatorname{FrequentItem}(\mathcal{B}, \ U, \ s) \ // \ \text{a hash table} \\ & \text{for each basket } \mathcal{B} \text{ in } \mathcal{B} \\ & \text{for each pair of items } \{i, j\} \in \mathcal{B} \text{ s.t both } i, j \in \mathcal{L}_1 \\ & \operatorname{Support}[\{i, j\}] \leftarrow \operatorname{Support}[\{i, j\}] + 1 \\ & \text{if } \operatorname{Support}[\{i, j\}] \geq s. \\ & \operatorname{Output } \{i, j\}. \end{aligned}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Frequent Itempairs : One more pass, fewer memory

Observation

 $\textit{If } \texttt{Support}(\{i,j\}) \geq \textit{s, then } \texttt{Support}(i) \geq \textit{s and } \texttt{Suport}(j) \geq \textit{s.}$

 $\begin{aligned} & \operatorname{FrequentItemPAIR}(\mathcal{B}, \ U, \ s) \\ & L_1 \leftarrow \operatorname{FrequentItem}(\mathcal{B}, \ U, \ s) \ // \ \text{a hash table} \\ & \text{for each basket } \mathcal{B} \text{ in } \mathcal{B} \\ & \text{for each pair of items } \{i, j\} \in \mathcal{B} \text{ s.t both } i, j \in L_1 \\ & \operatorname{Support}[\{i, j\}] \leftarrow \operatorname{Support}[\{i, j\}] + 1 \\ & \text{if } \operatorname{Support}[\{i, j\}] \geq s. \\ & \operatorname{Output } \{i, j\}. \end{aligned}$

- The algorithm makes two passes.
- The memory is roughly $\text{Size}(|L_1|) + |32 * |C_1| + \text{Size}(C_1)$ where C_1 is set of candidate itempairs. An itempair is a candidate if its items are frequent. We can expect $C_1 \ll P$.

Observation (Monotonicity Principle)

If $\text{Support}(I) \ge s$, then for any subset $J \subseteq I$, $\text{Support}(J) \ge s$.

- 3

イロト 不得下 イヨト イヨト

Observation (Monotonicity Principle)

If $\text{Support}(I) \ge s$, then for any subset $J \subseteq I$, $\text{Support}(J) \ge s$.

```
\begin{aligned} & \operatorname{FREQUENTITEMSET}(\mathcal{B}, U, s, k) \\ & \mathcal{L}_{k-1} \leftarrow \operatorname{FREQUENTITEMSET}(\mathcal{B}, U, s, k-1) // \text{ a hash table} \\ & \text{for each basket } \mathcal{B} \text{ in } \mathcal{B} \\ & \text{ for each } k\text{-subset } I \subseteq \mathcal{B} \\ & \text{ if every } (k-1)\text{-subset } J \text{ of } I \text{ is in } \mathcal{L}_{k-1} \\ & \operatorname{Support}[I] \leftarrow \operatorname{Support}[I] + 1 \\ & \text{ if } \operatorname{Support}[I] \geq s \\ & \operatorname{Output } I. \end{aligned}
```

イロト 不得下 イヨト イヨト 二日

Schematically, the algorithm looks like the following:

< 1[™] >

Schematically, the algorithm looks like the following:

- The algorithm makes k passes.
- Memory Size(L_{k-1}) + 32|C_k| + Size(C_k) where C_k is the set of candidate itemsets of size k.

Limited Memory

Recall:

 $\begin{aligned} & \text{FREQUENTITEMPAIR}(\mathcal{B}, \ U, \ s) \\ & L_1 \leftarrow \text{FREQUENTITEM}(\mathcal{B}, \ U, \ s) \ // \text{ a hash table} \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{for each pair of items } \{i, j\} \in B \text{ s.t both } i, j \in L_1 \\ & \text{Support}[\{i, j\}] \leftarrow \text{Support}[\{i, j\}] + 1 \\ & \text{if Support}[\{i, j\}] \geq s. \\ & \text{Output } \{i, j\}. \end{aligned}$

• The memory is roughly $\text{Size}(L_1) + 32 * |C_1| + \text{Size}(C_1)$ where C_1 is set of candidate itempairs. An itempair is a candidate if its items are frequent. We want to reduce C_1 further.

< □ > < □ > < □ > < □ > < □ > < □ >

Park-Chen-Yu Algorithm

1st pass:

```
FREQUENTITEM(\mathcal{B}, U, s)
for each basket B in B
      for each item i \in B
            Support[i] \leftarrow Support[i] + 1
            if Support[i] > s
                  Put i to L_1
       CountMap \leftarrow \emptyset of m slots
      for each pair of items i, j \in B
            h \leftarrow hash(i, j)
            CountMap[h] \leftarrow CountMap[h] + 1
 BitMap \leftarrow \emptyset of size m
for h \leftarrow 1 to m
      if CountMap[h] > s BitMap[h] \leftarrow 1
      else BitMap[h] \leftarrow 0
return L_1[.], BitMap[.]
```

Park-Chen-Yu Algorithm

2nd pass:

```
\begin{aligned} & \operatorname{FrequentItemPAIR}(\mathcal{B}, \ U, \ s) \\ & L_1[.], BitMap[.] \leftarrow \operatorname{FrequentItem}(\mathcal{B}, \ U, \ s) \ // \text{from 1st pass} \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{ for each pair of items } \{i, j\} \in B \\ & \text{ if both } i, j \in L_1 \text{ and } BitMap[hash(\{i, j\})] = 1 \\ & \operatorname{Support}[\{i, j\}] \leftarrow \operatorname{Support}[\{i, j\}] + 1 \\ & \text{ if Support}[\{i, j\}] \geq s. \\ & \operatorname{Output } \{i, j\}. \end{aligned}
```

- The memory is roughly $\text{Size}(L_1) + m + 32 * |C'_1| + \text{Size}(C'_1)$ where C'_1 is set of candidate itempairs. An itempair is a candidate if its items are frequent and the location of the pair in the BitMap is 1. Obviously $C'_1 < C_1$.
- How can we reduce C'_1 further?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 1st pass: similar to the original PCY. We construct a table of frequent items L₁[.] and construct the bit map BitMap₁[.]

3

< □ > < 同 > < 回 > < 回 > < 回 >

- 1st pass: similar to the original PCY. We construct a table of frequent items L₁[.] and construct the bit map BitMap₁[.]
- 2nd pass:

```
CONSTRUCT MAPS(\mathcal{B}, U, s)
L_1[.], BitMap_1[.] \leftarrow FREQUENTITEM(\mathcal{B}, U, s) //from 1st pass
CountMap \leftarrow \emptyset of m slots
for each basket B in B
      for each pair of items \{i, j\} \in B
           if both i, j \in L_1 and BitMap_1[hash(\{i, j\})] = 1
                 h \leftarrow hash_2(\{i, j\}) //a different hash function
                  CountMap[h] \leftarrow CountMap[h] + 1
BitMap_2 \leftarrow \emptyset of size m
for h \leftarrow 1 to m
      if CountMap[h] \ge s BitMap_2[h] \leftarrow 1
      else BitMap_2[h] \leftarrow 0
return L_1[.], BitMap_1[.], BitMap_2[.]
                                                   イロト イボト イヨト イヨ
                                                                         - 34
```

• 1st pass: similar to the original PCY. We construct a table of frequent items *L*₁[.] and construct the bit map *BitMap*₁[.]

< □ > < 同 > < 回 > < 回 > < 回 >

- 1st pass: similar to the original PCY. We construct a table of frequent items L₁[.] and construct the bit map BitMap₁[.]
- 2nd pass, construct another bitmap BitMap₂[.]
- 3rd pass:

```
\begin{aligned} & \operatorname{FrequentItemPAIR}(\mathcal{B}, U, s) \\ & L_1[.], BitMap[.], BitMap_2[.] \leftarrow \operatorname{ConstructMaps}(\mathcal{B}, U, s) \\ & \text{for each basket } B \text{ in } \mathcal{B} \\ & \text{ for each pair of items } \{i, j\} \in B \\ & \text{ if both } i, j \in L_1 \text{ and } BitMap_1[hash_1(\{i, j\})] = 1 \\ & \text{ and } BitMap_2[hash_2(\{i, j\})] = 1 \\ & \operatorname{Support}[\{i, j\}] \leftarrow \operatorname{Support}[\{i, j\}] + 1 \\ & \text{ if } \operatorname{Support}[\{i, j\}] \geq s. \\ & \operatorname{Output } \{i, j\}. \end{aligned}
```

イロト 不得下 イヨト イヨト 二日

• 1st pass: similar to the original PCY. We construct a table of frequent items *L*₁[.] and construct the bit map *BitMap*₁[.]

- 1st pass: similar to the original PCY. We construct a table of frequent items *L*₁[.] and construct the bit map *BitMap*₁[.]
- 2nd pass, construct another bitmap *BitMap*₂[.]
- 3rd pass: check both BitMaps for a candidate pair.

- 1st pass: similar to the original PCY. We construct a table of frequent items *L*₁[.] and construct the bit map *BitMap*₁[.]
- 2nd pass, construct another bitmap *BitMap*₂[.]
- 3rd pass: check both BitMaps for a candidate pair.
- The memory is roughly $\text{Size}(L_1) + 2m + 32 * |C_1''| + \text{Size}(C_1'')$ where C_1'' is set of candidate itempairs. An itempair is a candidate if its items are frequent and the location of the pair in both BitMaps is 1. Obviously $C_1'' < C_1'$.
- How can we reduce C_1'' further? More passes, more BitMaps.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What if:

- Your data is too big and I-O is very slow?
- It is OK to find most (but not all) frequent itemsets.

Idea: sample a p fraction of the dataset, say p = 1%, and find the frequent itemset in the sample with threshold $p \cdot s$. You can expect that your sample, say S, can fit into the main memory.

Idea: sample a p fraction of the dataset, say p = 1%, and find the frequent itemset in the sample with threshold $p \cdot s$. You can expect that your sample, say S, can fit into the main memory.

- Frequent itemset in S is not frequent in \mathcal{B} : false positive.
- Frequent itemset in \mathcal{B} is not frequent in \mathcal{S} : false negative.

Idea: sample a p fraction of the dataset, say p = 1%, and find the frequent itemset in the sample with threshold $p \cdot s$. You can expect that your sample, say S, can fit into the main memory.

- Frequent itemset in S is not frequent in B: false positive.
- Frequent itemset in \mathcal{B} is not frequent in \mathcal{S} : false negative.

Reducing error:

• Reduce false positive by using one extra pass through the data: count support of all frequent itemsets discovered in the sample.

Idea: sample a p fraction of the dataset, say p = 1%, and find the frequent itemset in the sample with threshold $p \cdot s$. You can expect that your sample, say S, can fit into the main memory.

- Frequent itemset in S is not frequent in B: false positive.
- Frequent itemset in \mathcal{B} is not frequent in \mathcal{S} : false negative.

Reducing error:

- Reduce false positive by using one extra pass through the data: count support of all frequent itemsets discovered in the sample.
- Reduce false negative by lowing the threshold for the sample set: instead of $p \cdot s$, we use a smaller threshold, say $0.9p \cdot s$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Savasere-Omiecinski-Navathe Algorithm

Idea: randomly split the dataset into $\frac{1}{p}$ disjoint parts, each part of size p fraction of the whole dataset. A frequent threshold $p \cdot s$ is set for each part. Find all itemsets that are frequent in at least one part.

Savasere-Omiecinski-Navathe Algorithm

Idea: randomly split the dataset into $\frac{1}{p}$ disjoint parts, each part of size p fraction of the whole dataset. A frequent threshold $p \cdot s$ is set for each part. Find all itemsets that are frequent in at least one part.

• No false negative: if the itemset is not frequent in any part, then it is infrequent in the whole dataset. (Why?)

Idea: randomly split the dataset into $\frac{1}{p}$ disjoint parts, each part of size p fraction of the whole dataset. A frequent threshold $p \cdot s$ is set for each part. Find all itemsets that are frequent in at least one part.

- No false negative: if the itemset is not frequent in any part, then it is infrequent in the whole dataset. (Why?)
- False positive: using one extra pass through the data.