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Misc

PA1 due by Jan 28, 2019 11:55 pm

HW1 due by Jan 30, 2019 10:00 am (turn in a hard copy in class).

For PA1, you don’t need to use advanced text processing, i.e, upper
case to lower case, remove stop words, remove question mark. Just
break a sentence into words by breaking spaces is ok.

I DO NOT expect you to use complicated subroutine like threading,
parallelism to speed up the program.
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Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I ) ≥ s.

Support of an itemset I , denoted by Support(I ), is the number of baskets
that contains all items in I .

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

Support({Brerad ,Milk}) = 3
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Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I ) ≥ s.

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

If we set s = 3, then frequent itemsets:

of size 1 are: {Bread}, {Milk}, {Beer}, {Diapers}.
of size 2 are: {Bread, Milk}, {Beer, Diapers}

There is no frequent itemset of size at least 3.
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Applications

Discover surprising relationships such as {Beer, Diapers}1.

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

1See the history at: https://tdwi.org/articles/2016/11/15/
beer-and-diapers-impossible-correlation.aspx
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Applications

Detecting plagiarism.

“Baskets” are sentences.

“Items” are documents.

Two documents “appear” together in many sentences indicates plagiarism.
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Applications

Online vs Brick-and-Mortar Retailing

Online store: if you bought something, they can immediately
recommend other items to buy.

Brick-and-Mortar store: put items in frequent itemsets close to each
other on the shelves.
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Association Rule Mining

Rules of the form I → j , often is interpreted as if people buy I , they will
likely buy j as well.

Confidence of a rule:

Conf[I → j ] =
Support(I ∪ {j})

Support(I )
(1)

We typically interested in rules where Support(I ) ≥ s.

Interest of a rule:

Interest[I → j ] = Conf [I → j ]− |Support({j})|
|B|

(2)

We are typically interested in rules that have positive interest.
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Association Rule Mining

Baskets Items

1 {Bread,Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread,Milk, Diapers, Beer}
5 {Bread, Milk, Diapers, Cola}

Association rule: {Beer ,Diapers} → Bread .

Conf({Beer ,Diapers} → Bread) = Support({Beer ,Diapers,Bread})
Support({Beer ,Diapers}) = 2

3

Interest({Beer ,Diapers} → Bread) = 2
3 −

4
5 < 0
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Finding Association Rules

Suppose that we are interested in rules that have confidence at least 0.5.

Lemma

If Support(I ) ≥ s and Conf(I → j) ≥ 0.5, then Support(I ∪ {j}) ≥ s/2

FindAssocRules(B, U, s)
I ← FrequentItemset(s/2)
for each itemset I ∈ I

T [I ]← Support(I ). // a hash table

for each J ∈ I
for each j ∈ J

I ← J \ {j}
c ← T [J]

T [I ] // the confidence, J = I ∪ {j}
Report I → j if c ≥ 0.5.
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Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set U and a threshold s. Find all itemsets I such that
Support(I ) ≥ s.

Some points:

The number of distinct subsets of U is 2n where n = |U|, so in the
worst case the number of “frequent” itemsets is 2n. (When does this
happen?)

Keep in mind that in reality, s is set appropriately so that the number
of frequent itemsets is not too large. Typically, s = 1% to 10% of the
number of baskets.

Ideally, we would like an algorithm that has running time and memory
requirement linear to the number of frequent itemsets in the database.
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Frequent Itemset Problem

Frequent Itemset Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all itemsets I such that
Support(I ) ≥ s.

With very big data, we can’t feed all the data to the memory. Thus, we
would like an algorithm that:

passes through the data few times, because reading data from hard
disks is very slow.

minimizes the memory usage.
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A Simplification: Frequent Items

Frequent Item Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all items i ∈ U such
that Support({i}) ≥ s.

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i ]← Support[i ] + 1
if Support[i ] ≥ s.

Output {i}.

Use a hash table or an array (in case all items are indexed from 1 to |U|)
to implement Support[.].
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A Simplification: Frequent Items

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i ]← Support[i ] + 1
if Support[i ] ≥ s.

Output {i}.

Q: How many passes does the algorithm make?

I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ n + Size(U) bits where n = |U|, assuming that a counter

of 32 bits suffices to count the frequency of any item, where Size(U)
is the number of bits in representing items in U.
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Frequent Itempairs

Frequent Itempair Problem

Given a set of m baskets B = {B1,B2, . . . ,Bm}, each contains a set of
items from a ground set O and a threshold s. Find all pairs of elements
{i , j} ⊆ U such that Support({i , j}) ≥ s.
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Frequent Itempairs

FrequentItempair(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

Q: How many passes does the algorithm make?

I A: One pass.

Q: How much memory does the algorithm use?
I Roughly 32 ∗ |P|+ Size(P) bits where P is the iset of tempairs that

have non-zero support.
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Frequent Itempairs : One more pass, fewer memory

Observation

If Support({i , j}) ≥ s, then Support(i) ≥ s and Supoprt(j) ≥ s.

FrequentItempair(B, U, s)
L1 ← FrequentItem(B, U, s) // a hash table

for each basket B in B
for each pair of items {i , j} ∈ B s.t both i , j ∈ L1

Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The algorithm makes two passes.

The memory is roughly Size(|L1|) + |32 ∗ |C1|+ Size(C1) where C1

is set of candidate itempairs. An itempair is a candidate if its items
are frequent. We can expect C1 � P.
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Frequent Itemset of size k

Observation (Monotonicity Principle)

If Support(I ) ≥ s, then for any subset J ⊆ I , Support(J) ≥ s.

FrequentItemset(B,U, s, k)
Lk−1 ← FrequentItemset(B,U, s, k − 1) // a hash table

for each basket B in B
for each k-subset I ⊆ B

if every (k − 1)-subset J of I is in Lk−1
Support[I ]← Support[I ] + 1
if Support[I ] ≥ s

Output I .
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Frequent Itemset of size k

Schematically, the algorithm looks like the following:

The algorithm makes k passes.

Memory Size(Lk−1) + 32|Ck |+ Size(Ck) where Ck is the set of
candidate itemsets of size k .
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Limited Memory

Recall:

FrequentItempair(B, U, s)
L1 ← FrequentItem(B, U, s) // a hash table

for each basket B in B
for each pair of items {i , j} ∈ B s.t both i , j ∈ L1

Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The memory is roughly Size(L1) + 32 ∗ |C1|+ Size(C1) where C1 is
set of candidate itempairs. An itempair is a candidate if its items are
frequent. We want to reduce C1 further.
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Park-Chen-Yu Algorithm
1st pass:

FrequentItem(B, U, s)
for each basket B in B

for each item i ∈ B
Support[i ]← Support[i ] + 1
if Support[i ] ≥ s

Put i to L1
CountMap ← ∅ of m slots
for each pair of items i , j ∈ B

h← hash(i , j)
CountMap[h]← CountMap[h] + 1

BitMap ← ∅ of size m
for h← 1 to m

if CountMap[h] ≥ s BitMap[h]← 1
else BitMap[h]← 0

return L1[.],BitMap[.]
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Park-Chen-Yu Algorithm
2nd pass:

FrequentItempair(B, U, s)
L1[.],BitMap[.]← FrequentItem(B, U, s) //from 1st pass

for each basket B in B
for each pair of items {i , j} ∈ B

if both i , j ∈ L1 and BitMap[hash({i , j})] = 1
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.

The memory is roughly Size(L1) + m + 32 ∗ |C ′1|+ Size(C ′1) where
C ′1 is set of candidate itempairs. An itempair is a candidate if its
items are frequent and the location of the pair in the BitMap is 1.
Obviously C ′1 < C1.

How can we reduce C ′1 further?
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MultiStage: More passes, more BitMaps, less candidates
1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass:

ConstructMaps(B, U, s)
L1[.],BitMap1[.]← FrequentItem(B, U, s) //from 1st pass

CountMap ← ∅ of m slots
for each basket B in B

for each pair of items {i , j} ∈ B
if both i , j ∈ L1 and BitMap1[hash({i , j})] = 1

h← hash2({i , j}) //a different hash function

CountMap[h]← CountMap[h] + 1
BitMap2 ← ∅ of size m
for h← 1 to m

if CountMap[h] ≥ s BitMap2[h]← 1
else BitMap2[h]← 0

return L1[.],BitMap1[.],BitMap2[.]
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MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass:

FrequentItempair(B, U, s)
L1[.],BitMap[.],BitMap2[.]← ConstructMaps(B, U, s)
for each basket B in B

for each pair of items {i , j} ∈ B
if both i , j ∈ L1 and BitMap1[hash1({i , j})] = 1

and BitMap2[hash2({i , j})] = 1
Support[{i , j}]← Support[{i , j}] + 1
if Support[{i , j}] ≥ s.

Output {i , j}.
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MultiStage: More passes, more BitMaps, less candidates

1st pass: similar to the original PCY. We construct a table of
frequent items L1[.] and construct the bit map BitMap1[.]

2nd pass, construct another bitmap BitMap2[.]

3rd pass: check both BitMaps for a candidate pair.

The memory is roughly Size(L1) + 2m + 32 ∗ |C ′′1 |+ Size(C ′′1 ) where
C ′′1 is set of candidate itempairs. An itempair is a candidate if its
items are frequent and the location of the pair in both BitMaps is 1.
Obviously C ′′1 < C ′1.
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How can we reduce C ′′1 further? More passes, more BitMaps.
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Limited-Pass Algorithm

What if:

Your data is too big and I-O is very slow?

It is OK to find most (but not all) frequent itemsets.
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Limited-Pass Algorithm

Idea: sample a p fraction of the dataset, say p = 1%, and find the
frequent itemset in the sample with threshold p · s. You can expect that
your sample, say S, can fit into the main memory.

Frequent itemset in S is not frequent in B: false positive.

Frequent itemset in B is not frequent in S: false negative.

Reducing error:

Reduce false positive by using one extra pass through the data: count
support of all frequent itemsets discovered in the sample.

Reduce false negative by lowing the threshold for the sample set:
instead of p · s, we use a smaller threshold, say 0.9p · s.
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Savasere-Omiecinski-Navathe Algorithm

Idea: randomly split the dataset into 1
p disjoint parts, each part of size p

fraction of the whole dataset. A frequent threshold p · s is set for each
part. Find all itemsets that are frequent in at least one part.

No false negative: if the itemset is not frequent in any part, then it is
infrequent in the whole dataset. (Why?)

False positive: using one extra pass through the data.
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