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Misc

Homework submission: one person in the group submitting the
homework is ok, but all the names must appear on the paper of the
written homework.

New change in Programming Assignment 1: Question 1 from 10k
dataset to 4k dataset. The time limit is unchanged.
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Misc

Final project: You propose your own project (if you want somebody
to work with you on your ideas) and in the week of January 30, we
would have your proposal posted and other would choose whether
they would like to work with you on your projects.

I How to come up with a good idea? Look at Kaggle
competitions/datasets for a good dataset and then go from the data to
a project idea.

I We will post some ideas from previous classes for rerferences.

Programming Assignment 1 is out, due date is Jan 28 2019. Written
assignment will be out soon!
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Misc

Programming languages: Python 3 is a default choice. If you are not
comfortable with Python, you can use one of three languages: C,
C++ or Java. However, labs and homework instructions will use
Python 3.

Since projects for SENG 474 and CSC 578D have different
expectations, a SENG student should NOT be in the same group with
a CSC student for the project. However, if you are a SENG student
and insist on being in a group with CSC students, then the
expectation for the project is CSC.

You can pair with different students on different homeworks. Make
sure you have the names of all the students in your group on paper.
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Problem

Finding similar items

Given a collection of items I = {I1, I2, . . . , Im} and an arbitrary item I ,
find items in I that are similar to I .

Questions that we explore:

What does it mean for two items to be similar?

How can we (quickly) find similar items?
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Applications

Question suggestion in Quora.

Figure: Quora
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Applications

Recommendation system

Figure: Amazon
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Applications

Amazon Recommendation System in a 2003 paper1 (cited more than 5000
times according to Google scholar).

AmazonAlg(a customer C who bought item I1)
foreach item I2

Compute the similarity between I1 and I2
Recommend most similar items of I1 to C .

Figure: Amazon recommedation system

1https://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
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Applications

Many other applications.

Web page deduplication.

Plagiarism detection.

News deduplication.

And more.
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Back to our problem

Finding similar items

Given a collection of items I = {I1, I2, . . . , Im} and an arbitrary item I ,
find items in I that are similar to I .

Each item is typically a set of elements drawn from a ground set U.

Each document is a set of words. U here is a set of all words that
appears in the collection of documents.

Each Amazon item can be represented by a set of customers who
bought the item. U here is a set of all customers who ever bought
something on Amazon.
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Jaccard similarity measure for sets

Jaccard similarity

Sim(I1, I2) =
|I1 ∩ I2|
I1 ∪ I2

(1)

For example, I1 = {a, b, d} and I2 = {a, d , e}. Then I1 ∩ I2 = {a, d} and
I1 ∪ I2 = {a, b, d , e}. Thus:

Sim(I1, I2) =
|{a, d}|
|{a, b, d , e}|

=
2

4
=

1

2

How to calculate Jaccard similarity efficiently?

We can compute Jaccard similarity in O(|I1|+ |I2|) time using
hashing. See the board calculation.
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Upon having a similarity measure

Finding similar items

Given a collection of items I = {I1, I2, . . . , Im} and an arbitrary item I1,
find all items I2 in I such that Sim(I1, I2) ≥ x for some fixed threshold
x < 1.
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We can do like Amazon

FindSim(item I1, threshold x)
foreach item I2

Compute Sim(I1, I2).
Report I2 if Sim(I1, I2) ≥ x .

The worst case running time is O(m2n) where m = |I| and n = |U| if
you want to find similar items for all items. See the board calculation.

Typically m, n is about 10M − 100M for a big system like Amazon, so
the algorithm is terribly slow.
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If you are curious what does Amazon do

They employed the following heuristics:

Compute the similarity table offline: “This offline computation of the
similar-items table is extremely time intensive, with O(N2M) as worst
case. In practice, however, it’s closer to O(NM), as most customers
have very few purchases.”

Online phase: only loop through items I2 bought by customers who
already bought I1.

Sampling: ‘Sampling customers who purchase best-selling titles
reduces run-time even further, with little reduction in quality.”
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This lecture

Finding similar items

Given a collection of items I = {I1, I2, . . . , Im} and an arbitrary item I1,
find all items I2 in I such that Sim(I1, I2) ≥ x for some fixed threshold
x ≤ 1.

W will study a data structure D where:

D can be built in O(n + m) time (best case).

For any item I1, similar items can be retrieved by querying data
structure D in times O(1) per similar item. (If I1 has p similar items,
the querying time is O(p).)

Hung Le (University of Victoria) Finding Similar Items January 15, 2019 15 / 30



Let’s simplify the problem a bit

Finding similar items

Given a collection of items I = {I1, I2, . . . , Im} and an arbitrary item I1,
find all items I2 in I such that Sim(I1, I2) = 1.

Can you build the data structure D?

Sim(I1, I2) = 1 if and only if I1 = I2 (proof?)

A hash table would work!
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The general problem

Finding similar items

Given a collection of items I = {I1, I2, . . . , Im} and an arbitrary item I1,
find all items I2 in I such that Sim(I1, I2) ≥ x for x < 1.

Idea: design a hash function h(.) such that:

h(I1) = h(I2) when Sim(I1, I2) ≥ x (w.h.p2).

h(I1) 6= h(I2) when Sim(I1, I2) < x (w.h.p) .

But, similarity is not a transitive relation.

I1 = {a, b, d}, I2 = {b, d , e}, I3 = {d , e, f } and x = 0.5.
Sim(I1, I2) ≥ x , Sim(I2, I3) ≥ x but Sim(I1, I3) < x .

It suggests that we may need to use many hash tables to have a robust
data structure. (We will go into details of this point later.)

2w.h.p = with high probability
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Overview of the data structure

Build(D)
D ← {H1,H2, . . . ,Hb} // use b hash tables

foreach hash table Hi

Let hi (.) be the corresponding hash function.
foreach item I ∈ I

j ← hi (I )
Hi [j ]← Hi [j ] ∪ {I} // put item I to location j

Running time? O(b ×m × {hashing time per item}).

Typically use b ∈ [20, 128] (will see later).

The hashing time is proportional to the size of items I . In practice, |I |
is roughly a small order of 100.

So the (best case) running time is O(n + m), (recall n = |U|)
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Overview of the data structure

FindSim(D, item I1)
S ← ∅ // set of similar items to I1
foreach hash table Hi

Let hi (.) be the corresponding hash function.
j ← hi (I1)
S ← S ∪ Hi [j ] // collect all items in location j

return S

Running time? O(b × {hashing time of I}+ |SimSet(I )|) where
SimSet(I1) is the set of all items similar to I1.

Typically use b ∈ [20, 128] (will see later).

The hashing time is proportional to the size of items I . In practice, |I |
is roughly a small order of 100.

So the best case running time is O(|SimSet(I1)|).
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Are we done?

Design a hash function h(.) such that:

h(I1) = h(I2) when Sim(I1, I2) ≥ x (w.h.p).

h(I1) 6= h(I2) when Sim(I1, I2) < x (w.h.p) .

Let’s have some fun with probability!
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Random Permutation

Pick a random permutation π of elements in the ground set U.

Let hπ(I ) = minimum index of elements of I in π.

For example: U = {a, b, c , d , e, f }, and π = {2, 5, 1, 4, 6, 3}, that is
π[a] = 2, π[b] = 4, . . . , π[f ] = 3. Then what is h(I ) for I = {a, d , f }

h(I ) = min(2, 4, 6) = 2
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Random Permutation

Pick a random permutation π of elements in the ground set U.

Let hπ(I ) = minimum index of elements of I in π.

Lemma

Pr[hπ(I1) = hπ(I2)] =
|I1 ∩ I2|
|I1 ∪ I2|

= Sim(I1, I2). (2)

Question: when I1 = I2, is the lemma true?

Proof.

Idea: for any subset X ⊆ U, the probability that a particular element
x ∈ X has minimum index in π is 1

|X | .
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Minhashing3

Pick a random permutation π of elements in the ground set U.

Let hπ(I ) = minimum index of elements of I in π.

Lemma

Pr[hπ(I1) = hπ(I2)] =
|I1 ∩ I2|
|I1 ∪ I2|

= Sim(I1, I2). (3)

What we get is:

Pr[D(I1) = D(I2)] is at least 1− (1− x)b if Sim(I1, I2) ≥ x .

Pr[D(I1) 6= D(I2)] is at least (1− x)b if Sim(I1, I2) < x .

Recall we use b hash functions in D and by D(I1) = D(I2), we means I1
and I2 are hashed to the same location in at least one hash table in D.

3By Brorder, see https://www.cs.princeton.edu/courses/archive/spring13/

cos598C/broder97resemblance.pdf
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Still not done yet

Pr[D(I1) = D(I2)] is at least 1− (1− x)b if Sim(I1, I2) ≥ x .

Pr[D(I1) 6= D(I2)] is at least (1− x)b if Sim(I1, I2) < x ⇒ too many
false positives.

For example: when b = 10, x = 0.5 then (1− x)b ∼ 1
1000 .
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MinHash Signature

Pick r random permutations π1, π2, . . . , πr of elements in the ground
set U.

Let σi (I ) = minimum index of elements of I in πi for i = 1, 2, . . . , r .

h(I ) =< σ1(I ), σ2(I ), . . . , σr (I ) >. This is called a MinHash signature
of I .

I h(I1) = h(I2) if and only if σi (I1) = σi (I2) for all i = 1, 2 . . . , r .

Lemma

Pr[h(I1) = h(I2)] = (Sim(I1, I2))r .

Proof.

Your exercise!!
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MinHash Signature

Lemma

Pr[h(I1) = h(I2)] = (Sim(I1, I2))r .

What we get is:

Pr[D(I1) = D(I2)] is at least 1− (1− x r )b if Sim(I1, I2) ≥ x .

Pr[D(I1) 6= D(I2)] is at least (1− x r )b if Sim(I1, I2) < x .

No what?
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MinHash Signature

Pr[D(I1) = D(I2)] is at least 1− (1− x r )b if Sim(I1, I2) ≥ x .

Pr[D(I1) 6= D(I2)] is at least (1− x r )b if Sim(I1, I2) < x .

Draw the graph y = 1− 1(−x r )b 4.

Figure: Graph for y = 1− (1− x6)64. Here r = 6 and b = 64.

4Go to https://www.desmos.com/calculator to play with drawing
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MinHash Signature

How to choose r , b? Fix x then choose r , b such that (1− x r )b ∼ 1/2.
For example, when x = 0.5, r and b would (approximately) be such that
b = 2r . (That’s why I choose r = 6 and b = 64 in the graph.)

Figure: Graph for y = 1− (1− x6)64. Here r = 6 and b = 64.

Your exercise: if y = 0.5 when x = 0.25 , how b and r would look like?
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Some implementation issues

Q: How can I pick a random permutation?
A: Actually you don’t. Choose a hash function that hash each element of
U to a 32-bit number. Then the hash code of each item is the minimum
hash code among all elements in I .
If you just want to do some experiments, hash functions like h(x) = (ax
mod p) mod n where p is a prime number bigger than n and a is chosen
randomly from [1, p − 1] are reasonable.
If you build something serious, the tabulation hashing 5 is a good choice.

5https://en.wikipedia.org/wiki/Tabulation_hashing
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Some implementation issues

Q: We talk about signatures in the lecture (which are a concatenation of
integers). However, to use data structure D, you need to have the output
of the hash function to be a small numbers to index the hash tables. How
could that be done?
A: Use a standard hash function to map to a range of small integers for
indexing the hash table. But be careful in choosing the range (or load
factor) so that there are not many collisions.
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Cosine similarity

Cosine similarity

For two vectors x, y ∈ Rd :

Cosine(x, y) =

∑d
i=1 x [i ]y [i ]√∑n

i=1 x [i ]2 ·
√∑n

i=1 y [i ]2
(4)

Require to represent each item as a vector. For document, TF-IDF is
a popular choice.

A hashing version for similarity search for (a closely related version
of) cosine similarity, called SimHash6, exists.

6https://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/

CharikarEstim.pdf
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