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Motivation

Matrices are everywhere:
@ Graphs: Web or Social Network.

@ Pairwise interaction between two types of entities: movie rating,
image-tags

@ Spatial representation: images.
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Motivation

Matrices are everywhere:
@ Graphs: Web or Social Network.

@ Pairwise interaction between two types of entities: movie rating,
image-tags

@ Spatial representation: images.

In many applications, the raw matrix can be summarized by a “narrower
matrices.

@ “Narrower” means the output matrices have much less number of
columns/rows.

@ “Can be summarized " means we can almost recover the original
matrix from the summarized matrices.

Dimensionality reduction: find the “narrower” matrices of the original
matrix.
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Eigenvectors and Eigenvalues of Symmetric Matrices
e is an eigenvector corresponding to an eigenvalue A of a square matrix M
iff:

Me = Xe (1)
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Eigenvectors and Eigenvalues of Symmetric Matrices
e is an eigenvector corresponding to an eigenvalue A of a square matrix M
iff:

Me = Xe (1)

Fact 1 If e is an eigenvector of M, for any constant ¢ # 0, ce is also
an eigenvector of M (with the same eigenvalue) = We often require
that ||e||2 = 1.

Fact 2 If M € R™" is real and symmetric, then M has n real
eigenvectors and eigenvalues = In this lecture, M is real, symmetric.

Fact 3 We can order
AM>X> > A\

e; € (1)

(2)
We can make e;, e; orthogonal, i.e, eTej =0 for all i #j.

i
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Eigenvectors and Eigenvalues of Symmetric Matrices
e is an eigenvector corresponding to an eigenvalue A of a square matrix M
iff:

Me = Xe (1)

Fact 1 If e is an eigenvector of M, for any constant ¢ # 0, ce is also
an eigenvector of M (with the same eigenvalue) = We often require
that ||e||2 = 1.

Fact 2 If M € R™" is real and symmetric, then M has n real
eigenvectors and eigenvalues = In this lecture, M is real, symmetric.

Fact 3 We can order
AM>X> > A\

e; € (1)

(2)

We can make e;, e; orthogonal, i.e, e,-TeJ- =0 for all i #j.
A1 and e called the principal eigenvalue the principal eigenvector,

respectively
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Eigenvectors and Eigenvalues of Symmetric Matrices - An
Example

3 2
M= [2 6] ()
has:
)\1 =7 and X1 = [%, %]T
> 1 (4)
A2 =2 and X = [—=,——=]"
V5 Vb
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Finding Eigenvalues by Solving Equations

Eigenvalues are the roots of the following equation (with variable \):
det(M — Al) =0 (5)

where | is an identity matrix, and det(X) is the determinant of an n x n
matrix X.

Fact 4 det(M — Al) is a degree-n polynomial with variable A.
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Finding Eigenvalues by Solving Equations

Eigenvalues are the roots of the following equation (with variable \):
det(M = Al)=0 (5)

where | is an identity matrix, and det(X) is the determinant of an n x n
matrix X.

Fact 4 det(M — Al) is a degree-n polynomial with variable \.
Fact 5 If M is real and symmetric, Equation 5 has n real roots.

Fact 6 Computing the determinant of a matrix takes O(n3).
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Finding Eigenvalues by Solving Equations - An example

3 2
M= [2 6] (©)

2
- A

We have:

[3—)\ ] )
det(M — Al) = det( ) 6 )=A2—0\+ 14 (7)

Two roots are Ay = 7 and \» = 2.
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Finding Eigenvalues and Eigenvectors by Power lteration

Finding principal eigenvector and value.

POWERITERATION1(M)
Vg < a random vector

for t + 1 to k

_ Mvi
E [IMve]]
return vy, v, Mvy.

\'

@ Running time O((m+ n)k) where m is the number of non-zeros of M.

@ e; R vgand A\ = v[/\/lvk.
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Power lteration - An example

M = 32 (8)
|2 6
and vo = [1,1]7. Then

w0

Thus, vi = H’c’ﬂT‘?\lz — [0.530,0.848] 7. Repeat second time we get:

vy = [0.471,0.882] " (10)
The limiting vector is:

v, = [0.447,0.894] 7 (11)

with A = v} Mv, = 6.993
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Finding Eigenvalues and Eigenvectors by Power lteration

Finding the second largest eigenvalues and vectors

POWERITERATION2(M)
(e1, A1) < POWERITERATION1(M)
Vg < a random vector
Mg ~— M- )\1e1e1T

for t +— 1to k
_ Moyvi
Ve = TMve ]

return vy, v[ Mov,.

@ Running time O((m+ n)k) where m is the number of non-zeros of M.
@ ep ~vgand A & vaka.
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The Matrix of Eigenvectors

€1
Then:
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The Matrix of Eigenvectors - An Example

3 2
B [2 6] (14)
has: 1 5
_ 1.t 4T Xy — T
1—[\/5,\/5] 2 [\/— \/—] (15)
Thus,
(16)
(17)
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Principal Component Analysis- PCA

Given a set of points D = {x1,X2,...,X,} in RY, find a direction where all
the points line up best.
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Principal Component Analysis- PCA

Given a set of points D = {x1,X2,...,X,} in RY, find a direction where all
the points line up best.

@ A direction is a (unit) vector w.

@ All the points line up best along w when:

n

> (x/w)? (18)

i=1

is maximum.
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Principal Component Analysis- PCA

Let:

X = : (19)

Then

D (xw)? = || Xwl5 =wXT Xw (20)
i=1

Thus, >°7_;(x/w)? is maximum when w is the principal eigenvector of
XTX.
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Principal Component Analysis- PCA

Let:

Then

n

D (xw)? = || Xwl5 =wXT Xw (20)
i=1

Thus, >°7_;(x/w)? is maximum when w is the principal eigenvector of
XTX. Question: what is w’ X7 Xw when w is the principal eigenvector
of XTX?
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Principal Component Analysis- PCA

Let:

Then

n

D (xw)? = || Xwl5 =wXT Xw (20)
i=1

Thus, >°7_;(x/w)? is maximum when w is the principal eigenvector of
XTX. Question: what is w’ X7 Xw when w is the principal eigenvector
of XTX?

Answer: \1(XTX).
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PCA - An Example

G4
O
12 © 43)
O
O @
1 2
21 30 28
X = and XTX = (21)
3 4 28 30
4 3
has A1(X T X) = 58 with vector x; = [%, \L@]T
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PCA - More Components

Given a set of points D = {x1,X2,...,x,} in RY, find the second best
direction where all the points line up best.
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PCA - More Components

Given a set of points D = {x1,X2,...,x,} in RY, find the second best
direction where all the points line up best.
A direction u is the second best if

T

@ u’'w = 0, here w is the best.

@ All the points line up best along u among all directions orthogonal to
w. That is

n

> (x/u)? (22)

i=1

is maximum among all directions orthogonal to w
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PCA - More Components

Given a set of points D = {x1,X2,...,x,} in RY, find the second best
direction where all the points line up best.
A direction u is the second best if

T

@ u’'w = 0, here w is the best.

@ All the points line up best along u among all directions orthogonal to
w. That is

n

> (x/u)? (22)

i=1
is maximum among all directions orthogonal to w

Fact: u is the second eigenvector of X X corresponding to the second
largest eigenvalue \2(X T X).
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PCA - More Components

Given a set of points D = {x1,X2,...,X,} in R, find the k-th best
direction where all the points line up best.

Fact: The k-the best direction is the eigenvector of X7 X corresponding
to the k — th largest eigenvalue A\ (X7 X).
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Using PCA for Dimensionality Reduction

Given k eigenvectors e, ey, . .., e, corresponding to k largest eigenvalues.
We can then represent each new data point x; € D as:

T

XI-TE2
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Singular Value Decomposition
Let M be a m x n matrix. Let r be the rank of M. A Singular Value
Decomposition is a decomposition of M into three matrices U, %, V
where:

@ U is a column-orthogonal m x r matrix, i.e, uru=1,,

@ Y is a diagonal r X r matrix. Elements on the diagonal of ¥ are

singular values and are decreasingly ordered.
@ V is an column-orthogonal n x r matrix, i.e, vTv =1,

- — -7 -] — - —
T r
s v l

M -l v
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Understanding SVD

Think of U, %, V as a representation of concepts hidden in M.

2 £

B o
Erzff
=85 g%

Joe 11100
Jim ({3 3300
John (4 4 4 00
Jack |5 5500
Jil [0 00 4 4
Jenny 00055
Jane 00022

Two concepts:

ScienceFiction = {TheMatrixAlien, StarWars}

Romance = {Casablanca, Titanic}
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Dimensionality Reduction by SVD

A rank-k SVD approximation of M is the matrix UxX VkT where:
@ Uy contains the first k columns of U.

@ X, contains k largest elements of X.

@ V) contains the first k columns of V.
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Dimensionality Reduction by SVD - An Example

13
41
.55
.68
15
.07
.07

.02
.07
.09
A1
-.59
—.73
—.29

—-.01
—.03
—.04
—.05

.65
—.67

.32

(University of Victoria)

11100
33 3 00
4 4 4 00
5 5 5 0 0] =
02 0 4 4
0005 5
0010 2 2|
Ml

124 0 0 .56
0 95 0 12

40

Dimensionality Reduction

59 .56 09 .09
—-.02 .12 —-.69 -.69
—-.80 .40 .09 .09

VT

March 23, 2019
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Dimensionality Reduction by SVD - An Example
A rank-2 approximation of M’:

A3 .02 ]
41 .07
,Zg ?Ej [12.4 0 H.56 59 56 .09 .09
15 —.59 0 95| .12 —-.02 .12 —69 —.69
07 —.73
|07 —.29 |

[ 0.93 095 0.93 .014 .014 ]
2.93 299 293 .000 .000
3.92 4.01 3.92 .026 .026
= | 4.84 4.96 4.84 .040 .040
0.37 1.21 0.37 4.04 4.04
0.35 0.65 0.35 4.87 4.87
| 0.16 0.57 0.16 1.98 1.98 |
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Dimensionality Reduction by SVD - Why?

Theorem

Given M, a rank-k SVD approximation of M, denoted by Ax = UxX VkT
has:

IM — AxllF (24)

minimum among all possible rank-k matrices.

|| X||F is the Frobenius norm of X:

IX[lF = (25)
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How to choose k

Choose k so that at least 90% of energy of ¥ is preserved.

Energy(Y) = Y ¥[i, ]’ (26)
i=1
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Querying Concept

SIEA\ Je1S

DR S OO O poupqese)

XUy
N vk OSSO sy

vy

Joe
Jim
John
Jack
Jill
Jenny
Jane

cCo oW s L —
cCoo W AL —
cCo oW s L —

Suppose that a new person P has seen only one movie the Matrix and
rated it 4. Recall:

11100 140
33300 420
44400 560 1oy 0 1758 58 58 0 0
5 5 5 0.0 =170 0 0 95| 0 o o 71 .71
000 4 4 0 60 : :
00055 0 75
000 2 2 0 30

M U o VT
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Querying Concept (Contt.)

Let g be the row representation of P, that is:

q=1[4 0 0 0 0]

We can determine the “concept space” of P by:

qV =[2.32 0]
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Computing SVD

Recall
M=uUzvT (29)
Hence,
MTM=vzUuTurv’T = vx2vT (30)
which implies:
MTMV = vi? (31)

Conclusion: V is the set of eigenvectors of MT M. By the same
argument, U is the set of eigenvectors of MM
Question: What is X7
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