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Motivation

Matrices are everywhere:

Graphs: Web or Social Network.

Pairwise interaction between two types of entities: movie rating,
image-tags

Spatial representation: images.

In many applications, the raw matrix can be summarized by a “narrower”
matrices.

“Narrower” means the output matrices have much less number of
columns/rows.

“Can be summarized ” means we can almost recover the original
matrix from the summarized matrices.

Dimensionality reduction: find the “narrower” matrices of the original
matrix.
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Eigenvectors and Eigenvalues of Symmetric Matrices
e is an eigenvector corresponding to an eigenvalue λ of a square matrix M
iff:

Me = λe (1)

Fact 1 If e is an eigenvector of M, for any constant c 6= 0, ce is also
an eigenvector of M (with the same eigenvalue) ⇒ We often require
that ||e||2 = 1.

Fact 2 If M ∈ Rn×n is real and symmetric, then M has n real
eigenvectors and eigenvalues ⇒ In this lecture, M is real, symmetric.

Fact 3 We can order

λ1 ≥ λ2 ≥ . . . ≥ λn
e1 e2 . . . en

(2)

We can make ej , ej orthogonal, i.e, eTi ej = 0 for all i 6= j .

λ1 and e1 called the principal eigenvalue the principal eigenvector,
respectively
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Eigenvectors and Eigenvalues of Symmetric Matrices - An
Example

M =

[
3 2

2 6

]
(3)

has:

λ1 = 7 and x1 = [
1√
5
,

2√
5

]T

λ2 = 2 and x2 = [
2√
5
,− 1√

5
]T

(4)
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Finding Eigenvalues by Solving Equations

Eigenvalues are the roots of the following equation (with variable λ):

det(M − λI) = 0 (5)

where I is an identity matrix, and det(X ) is the determinant of an n × n
matrix X .

Fact 4 det(M − λI) is a degree-n polynomial with variable λ.

Fact 5 If M is real and symmetric, Equation 5 has n real roots.

Fact 6 Computing the determinant of a matrix takes O(n3).
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Finding Eigenvalues by Solving Equations - An example

M =

[
3 2

2 6

]
(6)

We have:

det(M − λI ) = det(

[
3− λ 2

2 6− λ

]
) = λ2 − 9λ+ 14 (7)

Two roots are λ1 = 7 and λ2 = 2.
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Finding Eigenvalues and Eigenvectors by Power Iteration

Finding principal eigenvector and value.

PowerIteration1(M)
v0 ← a random vector
for t ← 1 to k

vt = Mvt−1

||Mvt−1||
return vk , v

T
k Mvk .

Running time O((m + n)k) where m is the number of non-zeros of M.

e1 ≈ vk and λ1 ≈ vTk Mvk .
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Power Iteration - An example

M =

[
3 2

2 6

]
(8)

and v0 = [1, 1]T . Then

Mv0 =

[
3 2

2 6

][
1

1

]
=

[
5

8

]
(9)

Thus, v1 = Mv0
||Mv0||2 = [0.530, 0.848]T . Repeat second time we get:

v2 = [0.471, 0.882]T (10)

The limiting vector is:
vk = [0.447, 0.894]T (11)

with λ = vTk Mvk = 6.993
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Finding Eigenvalues and Eigenvectors by Power Iteration

Finding the second largest eigenvalues and vectors

PowerIteration2(M)
(e1, λ1)← PowerIteration1(M)
v0 ← a random vector
M2 ← M − λ1e1eT1
for t ← 1 to k

vt = M2vt−1

||Mvt−1||
return vk , v

T
k M2vk .

Running time O((m + n)k) where m is the number of non-zeros of M.

e2 ≈ vk and λ2 ≈ vTk Mvk .
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The Matrix of Eigenvectors

E =

 e1 e2 . . . en

 (12)

Then:
ETE = EET = I (13)
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The Matrix of Eigenvectors - An Example

M =

[
3 2

2 6

]
(14)

has:

x1 = [
1√
5
,

2√
5

]T x2 = [
2√
5
,− 1√

5
]T (15)

Thus,

E =

[
1√
5

2√
5

2√
5
− 1√

5

]
(16)

It is straightforward to verify that:

EET = ETE =

[
1 0

0 1

]
(17)
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Principal Component Analysis- PCA

Given a set of points D = {x1, x2, . . . , xn} in Rd , find a direction where all
the points line up best.

A direction is a (unit) vector w.

All the points line up best along w when:

n∑
i=1

(xTi w)2 (18)

is maximum.

Hung Le (University of Victoria) Dimensionality Reduction March 23, 2019 12 / 28



Principal Component Analysis- PCA

Given a set of points D = {x1, x2, . . . , xn} in Rd , find a direction where all
the points line up best.

A direction is a (unit) vector w.

All the points line up best along w when:

n∑
i=1

(xTi w)2 (18)

is maximum.

Hung Le (University of Victoria) Dimensionality Reduction March 23, 2019 12 / 28



Principal Component Analysis- PCA

Let:

X =


xT1
xT2
...
xTn

 (19)

Then

n∑
i=1

(xTi w)2 = ||Xw||22 = wTXTXw (20)

Thus,
∑n

i=1(xTi w)2 is maximum when w is the principal eigenvector of
XTX .

Question: what is wTXTXw when w is the principal eigenvector
of XTX?
Answer: λ1(XTX ).
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PCA - An Example

X =


1 2

2 1

3 4

4 3

 and XTX =

[
30 28

28 30

]
(21)

has λ1(XTX ) = 58 with vector x1 = [ 1√
2
, 1√

2
]T
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PCA - More Components

Given a set of points D = {x1, x2, . . . , xn} in Rd , find the second best
direction where all the points line up best.

A direction u is the second best if

uTw = 0, here w is the best.

All the points line up best along u among all directions orthogonal to
w . That is

n∑
i=1

(xTi u)2 (22)

is maximum among all directions orthogonal to w

Fact: u is the second eigenvector of XTX corresponding to the second
largest eigenvalue λ2(XTX ).
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PCA - More Components

Given a set of points D = {x1, x2, . . . , xn} in Rd , find the k-th best
direction where all the points line up best.
Fact: The k-the best direction is the eigenvector of XTX corresponding
to the k − th largest eigenvalue λk(XTX ).
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Using PCA for Dimensionality Reduction

Given k eigenvectors e1, e2, . . . , ek corresponding to k largest eigenvalues.
We can then represent each new data point xi ∈ D as:

xTi e1

xTi e2

·
·
·

xTi ek


(23)
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Singular Value Decomposition
Let M be a m × n matrix. Let r be the rank of M. A Singular Value
Decomposition is a decomposition of M into three matrices U,Σ,V
where:

U is a column-orthogonal m × r matrix, i.e, UTU = Im
Σ is a diagonal r × r matrix. Elements on the diagonal of Σ are
singular values and are decreasingly ordered.

V is an column-orthogonal n × r matrix, i.e, V TV = In
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SVD
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Understanding SVD

Think of U,Σ,V as a representation of concepts hidden in M.

Two concepts:

ScienceFiction = {TheMatrixAlien, StarWars}
Romance = {Casablanca, Titanic}
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Dimensionality Reduction by SVD

A rank-k SVD approximation of M is the matrix UkΣkV
T
k where:

Uk contains the first k columns of U.

Σk contains k largest elements of Σ.

Vk contains the first k columns of V .
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Dimensionality Reduction by SVD - An Example
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Dimensionality Reduction by SVD - An Example

A rank-2 approximation of M ′:
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Dimensionality Reduction by SVD - Why?

Theorem

Given M, a rank-k SVD approximation of M, denoted by Ak = UkΣkV
T
k

has:
||M − Ak ||F (24)

minimum among all possible rank-k matrices.

||X ||F is the Frobenius norm of X :

||X ||F =

√√√√ n∑
i=1

m∑
j=1

X [i , j ]2 (25)
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How to choose k

Choose k so that at least 90% of energy of Σ is preserved.

Energy(Σ) =
r∑

i=1

Σ[i , i ]2 (26)
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Querying Concept

Suppose that a new person P has seen only one movie the Matrix and
rated it 4. Recall:
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Querying Concept (Contt.)

Let q be the row representation of P, that is:

q =
[
4 0 0 0 0

]
(27)

We can determine the “concept space” of P by:

qV =
[
2.32 0

]
(28)
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Computing SVD

Recall
M = UΣV T (29)

Hence,
MTM = VΣUTUΣV T = VΣ2V T (30)

which implies:
MTMV = VΣ2 (31)

Conclusion: V is the set of eigenvectors of MTM. By the same
argument, U is the set of eigenvectors of MMT .
Question: What is Σ?
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