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Social-Network Graphs

Social networks become more and more popular now. Most popular social
networks (as of January 2019) are:

Facebook: 2.2 B active users.

Youtube: 1.9 B active users.

WhatsApp: 1.5 B active users

And more1.

1https://www.statista.com/statistics/272014/

global-social-networks-ranked-by-number-of-users/
Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 2 / 50

https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/


What is a Social Network

Some common characteristics:

A set of entities in the network.

At least one relationship between entities, so-called friend
relationship. It may be:

I Two-way: typical friend relationship.
I One-way: following relationship.
I Weighted: friends, family, acquaintances, etc.

Locality or nonrandomness such as the formation of communities.
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Representing Social Networks

We often represent social networks by graphs, call social graphs.

Figure: An example of a small social network.
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Examples of Social Networks

Telephone Networks:

Nodes: phone numbers.

Edges: Calls placed between phones.

Communities: groups of people communicate frequently, such as
groups of friends, members of a club, or people working at the same
company, etc.
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Examples of Social Networks (Cont.)

Email Networks:

Nodes: email addresses.

Edges: (two-way) email exchanges between addresses.

Communities: groups of people communicate frequently, such as
groups of friends, members of a club, or people working at the same
company, etc.
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Examples of Social Networks (Cont.)

Collaboration Networks:

Nodes: people who have published papers.

Edges: people publishing papers jointly.

Communities: groups of authors working on particular topics.
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Examples of Social Networks (Cont.)

Many other types:

Information Network (documents, web graphs, patents).

Infrastructure networks (roads, planes, water pipes, powergrids).

Biological networks (genes, proteins, food-webs of animals eating
each other).

Many more.
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Graphs with more than one Node Types

Facebook has:

Regular nodes: each node corresponds to a person.

Group: each node correspond to a group of people sharing a common
interest.
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Our main goal in this lecture

Identify “communities” which are subset of nodes with unusually strong
connections.
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Clustering

We can use clustering techniques, such as HC or K -means.

Distance measure: shortest path distances between nodes in graphs.

This typically produces undesirable or unstable results.
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Edge Betweenness

Betweenness of an edge e, denoted by B(e), intuitively is the number of
pairs of nodes (x , y) such that e ∈ P(x , y), where P(x , y) is the shortest
path between x , y .

There maybe more than one shortest path between two nodes x , y .

Define Bxy (e) to be the fraction of shortest paths between x , y going
through e.

B(e) =
n∑

x=1

n∑
y=x+1

Bx ,y (e) (1)

assuming nodes are indexed from 1 to n.
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Edge Betweenness - An example

High betweenness means the edge is likely between different communities.
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Betweenness to Communities

Remove the edges by decreasing order of betweenness until we obtain a
desired number of communities.
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Computing Edge Betweenness

GirvanNewman(G (V ,E ))
foreach node v ∈ V

Find a BFS tree Tv rooted at v .
NLv [1, . . . , n]← NodeLabeling(Tv ,G )
ELv [1, . . . , n]← EdgeLabeling(Tv ,G ,NLv )

foreach edge e ∈ E
B[e]← 0
foreach node v ∈ V

B[e]← B[e] + ELv [e]
B[e]← B[e]/2

return B[1, . . . ,m]

NLv [u] is the number of shortest paths from v to u.

ELv [e] is the contribution of shortest paths from v to e’s betwenness.
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Computing Edge Betweenness (Cont.)

NodeLabeling(Tv ,G (V ,E ))
v ← the root of T
{0, 1 . . . L} levels of nodes in T
NLv [v ]← 1
for `← 1 to L

foreach node u at level `
Pu = {w : uw ∈ E and level(w) = `− 1}
NLv [u]←

∑
w∈P(u)NLv [w ]

return NLv [1, . . . , n]

NLv [u] is the number of shortest paths from v to u.
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Computing Edge Betweenness (Cont.)

EdgeLabeling(Tv ,G (V ,E ),NLv )
v ← the root of T
{0, 1 . . . L} levels of nodes in T
foreach node u at level L

C [u]← 1
for `← L down to 1

foreach u at level `
Pu = {w : uw ∈ E and level(w) = `− 1}
foreach w ∈ Pu

ELv [uw ]← C [u]·NLv [w ]
NLv [u]

foreach w at level `− 1
Predw = {u : wu ∈ E and level(u) = `}
C [w ]←

∑
u∈Predw ELv [wu] + 1.0

return ELv [1, . . . , n]

ELv [e] is the contribution of shortest paths from v to e’s betwenness.
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Computing Edge Betweenness (Cont.)

GirvanNewman(G (V ,E ))
foreach node v ∈ V

Find a BFS tree Tv rooted at v .
NLv [1, . . . , n]← NodeLabeling(Tv ,G )
ELv [1, . . . , n]← EdgeLabeling(Tv ,G ,NLv )

foreach edge e ∈ E
B[e]← 0
foreach node v ∈ V

B[e]← B[e] + ELv [e]
B[e]← B[e]/2

return B[1, . . . ,m]

Running time: O(nm).

In practice, we pick a subset of the nodes at random and use these as
the roots of breadth-first searches to get an approximation of
betweenness.
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Graph Partitioning

Divide the graph into two parts so that the cut, the set of edges between
two parts, is minimized.

Typically want two parts have roughly equal size.

Figure: An example of a good cut.
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Normalized Cut

Let S ⊂ V and T = V \ S . Let E (S ,T ) be the set of edges with one
endpoint in S and one endpoint in T .

Cut(S ,T ) = |E (S ,T )|

Vol(S) =
∑
u∈S

degG (u) Vol(T ) =
∑
u∈T

degG (u) (2)

The normalized cut value for S ,T , denoted by NC(S ,T ), is:

NC(S ,T ) =
Cut(S ,T )

Vol(S)
+

Cut(S ,T )

Vol(T )
(3)

We want to find cut with minimum NC(S ,T ).

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 20 / 50



Graphs as Matrices

Adjacency matrix An×n where:

A[i , j ] =

{
1 if edge i − j ∈ E

0 otherwise
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Graphs as Matrices (Cont.)

Degree matrix Dn×n where:

D[i , j ] =

{
degG [i ] if edge i = j

0 otherwise
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Graphs as Matrices (Cont.)

Laplacian Matrix L = D − A.
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Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector x ∈ Rn associated with an eigenvalue
λ ∈ R if:

Lx = λx (4)

Fact 1: L has n eigenvalues s.t 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

Fact 2: The eigenvector associated with λ1 (= 0) of L is 1n.
Fact 3: The second eigenvector, denoted by x2, associated with λ2 of L
satisfies:

x2 = arg min xTLx (5)

subject to

xT2 1n = 0
n∑

i=1

x2[i ]2 = 1
(6)

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 24 / 50



Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector x ∈ Rn associated with an eigenvalue
λ ∈ R if:

Lx = λx (4)

Fact 1: L has n eigenvalues s.t 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
Fact 2: The eigenvector associated with λ1 (= 0) of L is 1n.

Fact 3: The second eigenvector, denoted by x2, associated with λ2 of L
satisfies:

x2 = arg min xTLx (5)

subject to

xT2 1n = 0
n∑

i=1

x2[i ]2 = 1
(6)

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 24 / 50



Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector x ∈ Rn associated with an eigenvalue
λ ∈ R if:

Lx = λx (4)

Fact 1: L has n eigenvalues s.t 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
Fact 2: The eigenvector associated with λ1 (= 0) of L is 1n.
Fact 3: The second eigenvector, denoted by x2, associated with λ2 of L
satisfies:

x2 = arg min xTLx (5)

subject to

xT2 1n = 0
n∑

i=1

x2[i ]2 = 1
(6)

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 24 / 50



Understanding λ2 and x2

xTLx =
∑

(i ,j)∈E

(x [i ]− x [j ])2 (7)

Why? Let N[i ] be the set of neighbors of i , including i .

xTLx =
n∑

i=1

∑
j∈N[i ]

x [i ]L[i , j ]x [j ]

=
n∑

i=1

∑
j∈N[i ]

x [i ](D[i , j ]− A[i , j ])x [j ]

=
n∑

i=1

d [i ]x [i ]2 − 2
∑

(i ,j)∈E

x [i ]x [j ]

=
∑

(i ,j)∈E

(x [i ]− x [j ])2

(8)

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 25 / 50



Understanding λ2 and x2

xTLx =
∑

(i ,j)∈E

(x [i ]− x [j ])2 (9)

Recall: The second eigenvector, denoted by x2, associated with λ2 of L
satisfies:

x2 = arg min xTLx (10)

subject to

xT2 1n = 0
n∑

i=1

x2[i ]2 = 1
(11)
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Understanding λ2 and x2
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Finding Overlapping Community

It’s is natural to expect that a person belonging to two or more community.
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Maximum Likelihood Estimation - MLE

Ideas: Assume that the network is generated by a probabilistic process
with a set of parameters p. Find p so that the probability (or likelihood) of
observing the network is maximum.

The process of finding p will give us the set of (overlapping)
communities.
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MLE - An example

A B

CD
Suppose that each edge is generated with probability p.

What is the probability of observing this graph? Answer: p4(1− p)2.

When this probability is maximize? Answer p = 2/3 (see the board
calculation)
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The Affiliation Graph Model

1 There is a given number of communities and nodes.

2 Each community has a set of nodes as members. The memberships
are parameters of the model.

3 Each community C has a parameter pC : two people in the
community is connected by an edge with probability pC . All pC values
are parameters of the model.

4 If two nodes u, v belong to more than one community, then there is
an edge uv if any community containing both u, v justifies for it.

Property (4) means:

puv = 1−
∏

C :{u,v}⊆C

(1− pC ) (12)
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The Affiliation Graph Model - An Example

w

D

C

y z

x

Two communities C = {x , y ,w} and D = {y ,w , z}.
Unknown parameters: pC , pD .

Find pC , pD to maximize the MLE of the network.

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 32 / 50



The Affiliation Graph Model - An Example (Cont.)

w

D

C

y z

x

pxw = pxy = pC pyz = pD pwy = 1− (1− pC )(1− pD)

pwz = 1− pD pxz = 1− ε

Then
pnetwork = p2CpD(pD + pC − pCpD)(1− pD)(1− ε) (13)

which is maximized when pC = 1, pD = 1
2 .
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The Affiliation Graph Model - An Example (Cont.)

w

D

C

y z

x
We found pC = 1, pD = 1

2 . But what is the point? Our goal is to find
overlapping communities, not just the parameters.
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The Affiliation Graph Model- Revisited

1 There is a given number of communities and nodes.

2 Each community has a set of nodes as members. The memberships
are parameters of the model.

3 Each community C has a parameter pC : two people in the
community is connected by an edge with probability pC . All pC values
are parameters of the model.

4 If two nodes u, v belong to more than one community, then there is
an edge uv if any community containing both u, v justifies for it.

We haven’t seen membership parameters. These parameters will give us
communities.
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The Affiliation Graph Model- Membership Parameters

For each node x and a given community C , there is a strength of
membership parameter FxC .

Given a community C and two nodes u, v ∈ C , the probability that
there is an edge uv in C is:

pCuv = (1− e−FuCFvC ) (14)

(No need to have pC anymore.)

Key point: each node belongs to every community but with different
degree of membership.
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The Affiliation Graph Model- Membership Parameters
(Cont.)

Key point: each node belongs to every community but with different
degree of membership.

puv = 1−
∏
C

(1− pC (uv)) = 1− e−
∑

C FuCFvC (15)

The likelihood of the graph:

pnetwork =
∏
uv∈E

(1− e−
∑

C FuCFvC )
∏
uv 6∈E

e−
∑

C FuCFvC (16)

How to maximize pnetwork? Answer: we maximize log(pnetwork) instead.
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The Affiliation Graph Model- Membership Parameters
(Cont.)

log pnetwork =
∑
uv∈E

log(1− e−
∑

C FuCFvC )−
∑
uv 6∈E

∑
C

FuCFvC (17)

How to maximize log pnetwork? Answer: find each FuC one at a time,
assuming other values are fixed.

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 38 / 50



SimRank

Measure similarities between nodes in social graphs of many node types.

Sky Tree

Picture 1 Picture 2 Picture 3
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SimRank (Cont.)

Given a node N, we want to find the similarity between N and other nodes.

Idea: start a random walk from N, with restart. The limiting distribution
will give us a similarity measure.
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SimRank (Cont.)

Transition matrix M[i , j ]:

M[i , j ] =

{
1

degG (i)
if (i , j) ∈ E

0 otherwise

Sky Tree

Picture 1 Picture 2 Picture 3
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Random Walk with Restart

Random walk with teleportation:

vt = βMvt−1 + (1− β)1n (18)

Random walk with restart:

vt = βMvt−1 + (1− β)eN (19)

where e[N] = 1 and e[i] = 0 for all i 6= N
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Random Walk with Restart - An example

Sky Tree

Picture 1 Picture 2 Picture 3

t vt-1

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 43 / 50



Counting Triangles

A triangle is a triangle.

A

B C

D E

How many triangle do we have in this figure?
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Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you
expect to find?

Assume that each edges is generated with probability m

(n2)
.

E[# triangles] =

(
n

3

)
(
m(n
2

))3 ∼ 4

3
(m/n)3 (20)

We expect the social network graph has much larger # triangles because
A is a friend of B, B is a friend of C then A likely is a friend of C .

We can qualify non-randomness of the social network by counting
triangles.
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Counting Triangles- A Naive Algorithm

CountingTriangle(G (V ,E ))
C ← 0
foreach edge uv ∈ E

C ← C + |N(u) ∩ N(v)|
return C/3

Running time? O(m∆) where ∆ is the maximum degree of the graph.

Hung Le (University of Victoria) Mining Social-Network Graphs March 16, 2019 46 / 50



Counting Triangles with High Degree Vertices

Assume that nodes are from {1, 2, . . . , n}.
Call a node v heavy hitter if degG (v) ≥

√
m. Call it light otherwise.

How many heavy hitters can we have?

∑
v∈V

degG (v) = 2m (21)

implies # of heavy hitters is at most 2
√
m.
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Counting Triangles with High Degree Vertices- Step 1

Step 1: Counting all triangles that only contain heavy hitters.

CountHeavyTriangles(G (V ,E ))
Vheavy ← ∅
for each node v ∈ V

if degG (v) ≥
√
m

add v to Vheavy

Cheavy ← 0
for each triple {u, v ,w} ⊂ Vheavy

if uv ∈ E and uw ∈ E and vw ∈ E
Cheavy ← Cheavy + 1

return Cheavy

Running time O(m1.5) if using a Hash table to index E .
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Counting Triangles with High Degree Vertices- Step 2

Step 2: Counting all triangles that contains at least one light vertex.

Say v ≺ u if (i) degG (v) < degv (u) or (ii) degG (v) = degG (u) and
v < u.

CountLightTriangles(G (V ,E ))
Vlight ← V \ Vheavy

Clight ← 0
for each edge uv ∈ V

if {u, v} ∩ Vlight 6= ∅
suppose v ≺ u
for each w ∈ N(v)

if v ≺ w
Clight ← Clight + 1

return Clight

Running time O(m
√
m)
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Counting Triangles with High Degree Vertices

CountTriangles(G (V ,E ))
Cheavy ← CountHeavyTriangles(G (V ,E ))
Clight ← CountLightTriangles(G (V ,E ))
return Cheavy + Clight

Overall running time O(m
√
m).

Recall the naive algorithm has running time O(m∆) where ∆ is the
maximum degree.
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