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Abstract
We show that simple local search gives a polynomial time approximation scheme (PTAS) for
the Feedback Vertex Set (FVS) problem in minor-free graphs. An efficient PTAS in minor-free
graphs is known for this problem by Fomin, Lokshtanov, Raman and Sauraubh [14]. However,
their algorithm uses many advanced tools such as contraction decomposition framework, Cour-
cellei’s theorem and the Robertson and Seymour decomposition. Local search, on the contrary,
is conceptually simple and easy to implement. It keeps exchanging a constant number of ver-
tices to improve the current solution until a local optimum is reached. We first show that local
search yields PTAS for FVS problem in bounded genus graphs, using two classic tools: separator
theorem and a bound on maximal matching in bounded genus graphs. We then show a similar
result for bounded treewidth graphs, using an amortized argument. Finally, we combine the two
arguments to show the PTAS result for minor-free graphs.
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1 Introduction

Given an undirected graph, the Feedback Vertex Set (FVS) problem asks for a minimum set
of vertices such that after removing this set, the resulting graph has no cycle. This problem
arises in a variety of applications, including deadlock resolution, circuit testing, artificial
intelligence, and analysis of manufacturing processes [13]. Because of its importance, the
FVS problem has been studied for a long time in the algorithm area. It is one of Karp’s 21
NP-complete problems [20] and is proved to be NP-hard even in planar graphs [32]. The
current best approximation ratio for FVS in general graphs is 2 due to Becker and Geiger [3]
and Bafna, Berman and Fujito [1].

For some special classes of graphs, better approximation algorithms are known. A
polynomial-time approximation scheme (PTAS) is an algorithm that for any fixed ε > 0,
finds an (1 + ε)-approximation of the optimal solution in polynomial time. Kleinberg and
Kumar [22] gave the first PTAS for FVS problem in planar graphs, followed by a PTAS by
Demaine and Hajiaghayi [10] which is generalizable to bounded genus graphs and single-
crossing-minor-free graphs. Recently, Cohen-Addad et al. [7] gave a PTAS for the weighted
version of this problem in bounded-genus graphs. The most general result obtained by
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Fomin, Lokshtanov, Raman and Sauraubh [14] was for minor-free graphs. However, all
known algorithms for this problem are complicated in both implementation and analysis.
We show that a simple local search algorithm (Algorithm 1) gives a PTAS for FVS problem
in minor-free graphs.

Algorithm 1 LocalSearch(G(V (G), E(G)), ε)
1: S ← an arbitrary solution of G
2: c← a constant depending on ε
3: while there is a solution S′ such that |S \ S′| ≤ c, |S′ \ S| ≤ c and |S′| < |S| do
4: S ← S′

5: output S

1.1 A brief overview of previous work

The first PTAS by Kleinberg and Kumar [22] considers two cases depending on the input
graph, say G, has a highly connected pair or not. Intuitively, two vertices are highly connected
if there are many vertex-disjoint paths between them1. If the input graph has no highly
connected pairs, Kleinberg and Kumar show that the separator based algorithm by Lipton
and Tarjan [24] is a PTAS. Otherwise, they consider two subcases: the region enclosed by
the highly connected pair have a feedback vertex set of size at least or less than a constant
C = O(ε−1). To dishtinguish between two subcases, they employ a fixed-parameter tractable
algorithm by Downey and Fellows [12]. Then, in each subcase, they recursively approximate
the FSV in subgrpahs of G. We note that there are several other smaller subcases in the
algorithm.

In the algorithm by Demaine and Hajiaghayi [10], the devise a contraction decomposition
framework to obtain a PTAS. Their framework use a constant approximation algorithm
to guide the decomposition of the input graph into pieces where each piece has a feedback
vertex set of constant size. By the bidimensional property of FVS, each piece has constant
treewidth. Thus, they can use dynamic programming to optimally solve FVS problem in
each piece. Then, the solutions of the pieces are glued together to form an approximate
solution of the original problem. We note that subroutines used in the algorithm by Demaine
and Hajiaghayi [10] are non-trivial. The recent algorithm by Cohen-Addad et al. [7] can be
applied to vertex-weighted bounded-genus graphs but it is not simpler than the algorithm
by Demaine and Hajiaghayi. In Section 4.1, we show a simple analysis of Algorithm 1 for
bounded genus graphs using the matching bound from an old result by Nishizeki [26].

Fomin, Lokshtanov, Raman and Sauraubh [14] generalize Demaine and Hajiaghayi [10]
result to minor-free graphs. Their algorithm, besides tools used by Demaine and Hajiaghayi,
uses the deep theorem by Robertson and Seymour [30] in graph minor theory and is considered
practically unimplementable [19]. In Section 4.3, we show that Algorithm 1 gives a PTAS
for FVS problem in minor-free graphs. To simplify the presentation, we first give a proof
for bounded-treewidth graphs in Section 4.2, that may be of independent interests. Our
final proof is essentially a combination of two arguments for bounded genus graphs and
bounded treewidth graphs. One drawback of our proof for minor-free graphs is that it uses
the Robertson and Seymour theorem. We conjecture that it is possible to give a proof that

1 See the paper by Kleinberg and Kumar [22] for the precise definition.
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does not rely on the Robertson and Seymour theorem as other problems that are known to
have local search PTAS in minor-free graphs.

1.2 Local Search Algorithms
Local search has been used before to obtain PTAS for other problems in minor-free graphs.
Cabello and Gajser [6] gave local search PTAS for maximum independent set problem,
minimum vertex cover problem and minimum dominating set problem in minor-free graphs.
Cohen-Addad, Klein and Mathieu [8] showed that local search yields PTAS for k-means,
k-median and uniform uncapacitated facility location in minor-free graphs. All their analysis
relies on the exchange graph, a graph constructed from the optimal solution2 O and the
local search solution L. For independent set and vertex cover, the exchange graph is the
subgraph induced by O ∪ L, and for for the other problems, the exchange graph is built by
contracting other vertices to vertices in the exchange graph. Then the local properties of
these problems appear in the exchange graphs: if we consider a small neighborhood R in
the exchange graph and replace the vertices of L in R with the vertices of O in R and the
boundary of R, then the resulting vertex set is still a feasible solution for the original graph.
Then by decomposing the exchange graph into small neighborhoods, we can bound the size
of L by the size of O and all the boundaries of those neighborhoods.

However, FVS problem does not have such local property if we construct exchange graph
only by deletion or only by contraction. This is because for a cycle C in the original graph,
the vertex of L that covers C may be inside of some neighborhood but the vertex of O that
covers C may be outside of that neighborhood. One may tries to argue the boundary of the
neighborhood could cover C. But sadly, the boundary may not be helpful since the crossing
vertices of C and the boundary may not be in both solutions and then they may be deleted
or contracted to other vertices.

To solve this problem, we will construct an exchange graph with the following property:
for any cycle C of the original graph, in our exchange graph there is either a vertex in
O ∩ L ∩ C, or an edge between a vertex in O ∩ C and a vertex in L ∩ C, or another cycle
C ′ such that vertices in C ′ is a subset of vertices in C and C ′ ∩ (O ∪ L) = C ∩ (O ∪ L). To
achieve this goal, we will apply both deletion and contraction to construct our exchange
graph. When we delete some vertices, we may need to add some additional edges into our
exchange graph. Further, we need to introduced vertices that are not in both solutions into
the exchange graph. However, we need to guarantee that the number of added vertices is
linear to the size of O ∪ L; that is the main contribution of our work and makes our work
different from all previous work.

We notice that if the input graph has bounded genus, then a simple bound for the
independent high degree vertices implies the linear bound of the size of the exchange graph.
This observation immediately implies the PTAS by local search for bounded genus graphs.
However, the observation fails for graphs with bounded treewidth. For such graphs, we
refine the tree decomposition and show that our construction can achieve the linear bound
by an amortized argument. For minor-free graphs, we combine these two ideas based
on the Roberson-Seymour decomposition theorem [30]. This theorem guarantees a tree
decomposition where each bag in the tree decomposition contains a graph that can be almost
embedded into a surface of constant genus. We then apply the first idea to bound the size of

2 For k-means and k-median, the exchange graph is constructed from L and a nearly optimal solution O′,
which is obtained by removing some vertices of O.
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each bag, and apply the second idea to refine the tree decomposition and bound the total
size of the exchange graph.

To complement our positive results, we show two negative results for two variants of
FVS problem, namely: odd cycle transversal and subset feedback vertex set. The odd cycle
transversal (also called bipartization) problem asks, given an undirected graph, a minimum
set of vertices whose removal results in a bipartite graph. The subset feedback vertex set
problem asks, given an undirected graph and a subset U of vertices, a minimum set S of
vertices such that after removing S the resulting graph contains no cycle that passes through
any vertex of U . Details are presented in Section 5.

1.3 Other implications of our work
Showing that FVS problem in minor-free graphs has a simple local search PTAS is a first
step toward a systematic characterization of those problems that admits local search PTASes.
In planar graphs, FVS problem and connected dominating set (CDS) problem have played
important roles as the motivation for new PTAS techniques. Baker’s shifting technique [2],
though very powerful, does not work for these two problems because of their non-locality. This
motivates Demaine and Hajiaghayi [10] to develop the bidimensionality framework that unifies
Baker’s shifting technique and Lipton-Tarjan’s separator approach. While more problems
have been shown to admit local search PTASes, there is no single, unified characterization
of such problems. We notice that local search PTAS for connected dominating set in low
density graphs, which include minor-free graphs as a subclass, was shown by Har-Peled and
Quanrud [17]. Our result can be seen as a complement of Har-Peled and Quanrud’s work
toward the better understanding of local search PTASes.

2 Preliminaries

For a graph G, we denote the vertex set of G by V (G) and the edge set of G by E(G). For a
subgraph H of G, the boundary of H is the set of vertices that are in H but have at least
one incident edge that is not in H. We denote by int(H) the set of vertices of H that are
not in the boundary of H. A graph H is a minor of G if H can be obtained from G by a
sequence of vertex deletions, edge deletions and edge contractions. G is H-minor-free if G
does not contain a fixed graph H as a minor.

A balanced separator of a graph is a set of vertices whose removal partitions the graph
roughly in half. In the seminal work of Lipton and Tarjan [23], they showed that planar graphs
have a balanced separator of sublinear size. Then, their result is extended to bounded-genus
graphs [11, 16, 21] and minor-free graphs [27, 4, 18, 28, 31]. An r-division is a decomposition
of a graph, which is first introduced by Frederickson [15] for planar graphs.

I Definition 1 (r-division). For an integer r, an r-division of a graph G is a collection of
edge-disjoint subgraphs of G, called regions, with the following properties.
1. Each region contains at most r vertices.
2. The number of regions is O(n/r).
3. The number of boundary vertices, summed over all regions, is O(n/

√
r).

We say a graph is r-divisible if it has an r-division. Frederickson [15] gave a construction
for the r-division of a planar graph which only relies on the separator theorem in planar
graphs [23]. It is straightforward to extend the construction to any family of graphs with
balanced separator of sublinear size. That implies:
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I Theorem 2 (Alon, Seymour, and Thomas [27] + Frederickson [15]). Minor-free graphs are
r-divisible.

Since bounded genus graphs and bounded treewidth graphs are minor-free, they are r-divisible.
We borrow the following theorem from Nishizeki [26] to prove a bound for the size of an

independent set of high degree vertices, which will be used in later analysis.

I Theorem 3 (Nishizeki [26]). Let G be a simple connected undirected graph with minimum
degree three and smallest genus g that has at least ten vertices. Then the size of a maximum
matching of G is at least d(n− 4g + 2)/3e where n is the number of vertices in G.

I Lemma 4. Let G be a connected graph of genus at most g that has at least two vertices.
Let X be an independent set of G such that every vertex in X has degree at least 3 in G.
Then |X| ≤ (2 + 4g)|V (G) \X|.

Proof. Let Y = V (G) \X. Consider a cellular embedding3 of G on a surface Σ of genus
at most g. We add edges, each of which is incident to at least one vertex in Y to G while
maintaining the genus g, so that G is still simple and every vertex of Y has degree at least 3.
This can be done by adding edges inside faces of length at least 4 of the cellular embedding
of G on Σ. Call the resulting graph G′. By Theorem 3, G′ has a matching M such that

|M | ≥ (n− 4g + 2)/3 (1)

where n is the number of vertices of G′ (also the number of vertices of G). Since each added
edge is incident to at least one vertex in Y , X is still an independent set in G′. Thus, each
edge in M is incident to at least one vertex in Y and |Y | ≥ |M |. By Equation (1), we have:

|Y | ≥ (|Y |+ |X| − 4g + 2)/3

That implies:

|X| ≤ 2|Y |+ 4g − 2 ≤ 2|Y |+ 4g ≤ (2 + 4g)|Y |

J

3 Exchange graph implies PTAS by Local search

In this section, we show that if for an H-minor-free graph G we can construct another graph,
called exchange graph, such that it is r-divisible, then Algorithm 1 is a PTAS for FVS in G.
In our analysis below, we choose the constant c = OH(1/ε2) in Algorithm 1, where OH(·)
notation hides the factors depending on the size of the minor H.

Let O be an optimal solution of the FVS problem and L be the output of the local search
algorithm.

I Definition 5. A graph Ex is an exchange graph for the optimal solution O and the local
solution L of FVS problem in a graph G if it satisfies the following properties:
(1) L ∪O ⊆ V (Ex) ⊆ V (G).
(2) |V (Ex)| = O(|L|+ |O|).

3 A graph is cellularly embedded if its faces are homeomorphic to open disks.
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(3) For every cycle C of G, there is (a) a vertex of C in O ∩ L or (b) an edge uv ∈ E(Ex)
between a vertex u ∈ L and a vertex v ∈ O in C or (c) a cycle C ′ of Ex such that
V (C ′) ⊆ V (C) and C ∩ (O ∪ L) = C ′ ∩ (O ∪ L).

I Theorem 6. If graph G has an r-divisible exchange graph for an optimal solution O and
a local solution L, then Algorithm 1 is a polynomial-time approximation scheme for feedback
vertex set problem in G, whose running time is nOH (1/ε2) where n is the number of vertices
in G.

Proof. Let Ex be an r-divisible exchange graph for O and L. Since Ex is r-divisible, we
can find an r-division of Ex for r = 1/δ2, where δ depends on ε and we decide later. Let B
be the multi-set containing all the boundary vertices in the r-division. By the third property
of r-division, |B| is bounded by O(|V (Ex)|/

√
r). By the second property of exchange graph,

|V (Ex)| is at most O(|O|+ |L|). Then we have for some constant c1

|B| ≤ c1δ(|O|+ |L|) (2)

If we can prove the difference between the two solutions is bounded by constant times of the
size of B, that is for some constant c2

|L| ≤ |O|+ c2|B|, (3)

then by setting δ = ε/(2c1c2 + c1c2ε), we have |L| ≤ (1 + ε)|O|, giving the approximation
ratio.

To prove Equation (3), we need the properties of Ex. For any region Ri of the r-division,
let Bi be the boundary of Ri and Mi be the union of L \Ri, O ∩Ri and Bi.
I Claim 7. Mi is a feedback vertex set of G.

Proof. For a contradiction, assume there is a cycle C of G that is not covered by Mi. Then
C does not contain any vertex of L \Ri, O ∩Ri and Bi. So C can only be covered by some
vertices of (L \O) ∩ int(Ri) and some vertices of O \ (L ∪Ri). This implies that C does not
contain any vertex of O ∩ L and there is no edge in Ex between C ∩O and C ∩ L. By the
third property of exchange graph, there must be a cycle C ′ in Ex such that V (C ′) ⊆ V (C)
and C ∩ (O ∪L) = C ′ ∩ (O ∪L). Let u be the vertex of (L \O) ∩ int(Ri) in C and v be the
vertex of O \ (L ∪Ri) in C. Then cycle C ′ contains both u and v, which implies C ′ crosses
the boundary of Ri, that is C ′ ∩Bi 6= ∅. Let w be a vertex in C ′ ∩Bi, then w also belongs
to C in G. This implies Mi contains a vertex of C, a contradiction. J

By the construction of Mi, we know the difference between L and Mi is bounded by the
size of the region Ri, that is r. Since L is the output of Algorithm 1, we know L cannot be
improved by changing at most c = r vertices. So we have |L| ≤ |Mi|. By the construction of
Mi, this implies

|L ∩Ri| ≤ |Mi ∩Ri| ≤ |O ∩ int(Ri)|+ |Bi|.

By this equation, we have

|L ∩ int(Ri)| ≤ |L ∩Ri| ≤ |O ∩ int(Ri)|+ |Bi| ≤ |O ∩Ri|+ |Bi|.

Summing over all regions in the r-division, we can have

|L| − |B| ≤
∑
i

|L ∩ int(Ri)| ≤
∑
i

(|O ∩Ri|+ |Bi|) ≤ |O|+ 2|B|.



H. Le and B. Zheng 23:7

This proves Equation (3).
Now we analyze the running time of Algorithm 1. In each iteration, the algorithm tries

to improve the current solution, so the size of the solution increases by at least one. Thus,
the number of iterations is O(n). Since each iteration needs O(nc) time for some constant
c = OH(1/ε2), the total running time is nOH (1/ε2). J

4 Exchange graph construction

By Theorem 6, it remains to show that there is an r-divisible exchange graph for any
H-minor-free graph G. We say a vertex is a solution vertex if it is in O ∪ L. To construct
the exchange graph for G, we first delete all edges that are incident to vertices of O ∩ L,
and remove all components that do not contain any solution vertex. Note that the removed
components are acyclic. Then we contract edges that have an endpoint that is not a solution
vertex and has degree at most two until there is no such edge in the resulting graph. Let K
be the resulting graph. We say a vertex is a Steiner vertex if it is not a solution vertex in K.

Since L and O are both feedback vertex set of G, every cycle of K must contain a vertex
from L and a vertex from O. Since edges incident to vertices of O ∩ L are removed, K has
no self-loop. However, K could have parallel edges and parallel edges must be between two
vertices in different solutions. We keep K simple by further removing parallel edges. Since
we only remove edges between solution vertices, we have:
I Observation 8. Every Steiner vertex of K has degree at least 3.

Since O ∪ L is a feedback vertex set of K, K \ (O ∪ L) is a forest F containing only
Steiner vertices. For each tree T in F , we define the degree of T , denoted by degK(T ), as
the number of edges in K between T and O ∪ L. Let `(T ) be the number of leaves of T . By
Observation 8, every internal vertex of T has degree at least 3. Thus, |V (T )| ≤ 2`(T ). That
implies:

|V (T )| ≤ 2 degK(T ). (4)

We observe that graph K satisfies the first and third properties in Definition 5 before
we remove parallel edges. Since all parallel edges are between solution vertices, K satisfies
these two properties after we remove all parallel edges. In Section 4.1, we show that if G has
bounded genus, K is an r-divisible exchange graph. However, when G only has bounded
treewidth, we need to further modify K to guarantee it is an r-divisible exchange graph.

4.1 Exchange graph for bounded genus graphs
In this section, we prove the following theorem.

I Lemma 9. If G has genus g, then we have |V (K)| ≤ (19 + 36g)(|L ∪O|).

Proof. Since each vertex in O ∩ L is isolated in K, every non-trivial connected component
of K does not contain any vertex of O ∩ L. In the argument below, we assume that K is
connected since otherwise we can apply the argument for each component of K separately.
We contract each tree T of F into a single Steiner vertex sT . Let K ′ be the resulting graph.
We have:
I Observation 10. Graph K ′ is simple.

Proof. Since every cycle of K must contains a vertex from L and a vertex from O, there
cannot be any solution vertex in K that is incident to more than one vertex of a tree T of F .
So there cannot be parallel edges in K ′. J

SOSA 2017
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Let X be the set of Steiner vertices of K ′. By the construction of K ′, set X is an
independent set of K ′. By Observation 8, every vertex of X has degree at least 3. Since
K ′ is a minor of G and since G has genus g, graph K ′ has genus at most g. By Lemma 4,
|X| ≤ (2 + 4g)|O ∪ L|. Thus, |V (K ′)| ≤ (3 + 4g)|O ∪ L|.

By Euler-Poincare formula, we have:

|E(K ′)| ≤ 3|V (K ′)|+ 6g − 6
≤ 3(3 + 4g)|O ∪ L|+ 6g − 6
≤ (9 + 18g)|O ∪ L|

(5)

We have:

|V (K) \ (O ∪ L)| =
∑
T∈F |V (T )|

≤ 2
∑
T∈F degK(T ) (Equation (4))

= 2
∑
T∈F degK′(sT )

≤ 2|E(K ′)| ({sT |T ∈ F} is an independent set)
≤ 2(9 + 18g)|O ∪ L| (Equation (5))

This implies the lemma. J

Since K is a minor of G and G has bounded genus, graph K also has bounded genus.
Thus, by Lemma 9, we have:

I Corollary 11. Algorithm 1 is a PTAS for Feedback Vertex Set problem in bounded genus
graphs.

4.2 Exchange graph for bounded treewidth graphs
Before presenting the full construction, we review some fundamental concepts related to
bounded treewidth graphs.

I Definition 12 (Tree decomposition). A tree decomposition of G is a pair (T ,X ) where T
is a tree, and X = {Xi|i ∈ V (T )} is a family of subsets of V (G) such that
1. the union of all sets Xi is V (G);
2. for each edge uv ∈ E(G), there is a bag Xi containing both u and v;
3. for any vertex v ∈ V (G), the set of nodes {i ∈ V (T )|v ∈ Xi} forms a subtree of T .
To distinguish the vertices in the original graph G and vertices of T , we call vertices of T nodes
and their corresponding Xi bags. The width of a tree decomposition is maxi∈V (T ) |Xi| − 1
and the treewidth of G is the minimum width among all possible tree decompositions of G.

I Lemma 13 (Bodlaender [5]). If G has treewidth k, then |E(G)| ≤ k|V (G)| − k(k + 1)/2.

In Subsection 4.1, we apply Lemma 4 to bound the number of Steiner vertices in graph
K. However, Lemma 4 does not hold for bounded treewidth graph. A counterexample could
be the complete bipartite graph K3,`: it has treewidth at most four and each vertex in the
big part has degree three, but the number of such vertices is unbounded. Therefore, we need
a different idea to construct the exchange graph for the bounded treewidth graphs. Recall
F = K \ (O∪L) is a forest of Steiner vertices. Our idea is based on the following observation.

I Observation 14. Let T be a tree in F and NT be the set of neighbors of leaves of T in
O ∪ L. If we remove T and adding edges to K so that NT induces a clique in K, then K
still satisfies properties (1) and (3) in Definition 5.



H. Le and B. Zheng 23:9

Ideally, we would like to apply the modification in Observation 14 to all Steiner vertices,
which may give us an exchange graph. However, this graph may not be r-divisible since its
treewidth may be very large. Therefore, we need to balance the treewidth and the number
of Steiner vertices so that the resulting graph satisfies r-divisibility and the properties of
exchange graph at the same time. In the following, we show that if we carefully choose
the trees in F , which do not have many neighbors in K, to apply the modification in
Observation 14, then we can obtain an exchange graph with bounded treewidth from K.

W.l.o.g. we assume K is connected, since otherwise we can apply the argument for each
component of K separately. Let k be the treewidth of G. Since graph K is a minor of G, we
know K has treewidth at most k. Let F0 be the set of trees in F whose degree is at least
k + 1. By the following lemma, we can bound the total size of F0.

I Lemma 15. The total size of F0 is at most 2k(k + 1)|O ∪ L|.

Proof. Let U be the graph obtained from K by contracting each tree T of F into a single
Steiner vertex sT . Since L and O are both feedback vertex sets, each cycle of K contains at
least one vertex from O and one vertex from L. Thus, degU (sT ) = degK(T ).

Let X be the set of Steiner vertices of U that have degree at least k + 1. Consider the
subgraph U [X ∪ L ∪O] of U induces by X ∪ L ∪O. Since K has treewidth k, subgraph
U [X ∪ L ∪O] has treewidth at most k. Because X is an independent set, we have:

(k + 1)|X| ≤ |E(U [X ∪ L ∪O])|
≤ k(|X|+ |O ∪ L|) (Lemma 13)

Thus, |X| ≤ k|O ∪ L|. Hence, |E(U [X ∪ L ∪O])| ≤ k(k + 1)|O ∪ L|. We have:∑
T∈F0

|V (T )| ≤
∑
T∈F0

2 degK(T ) (Equation (4))
= 2

∑
T∈F0

degU (sT )
≤ 2|E(U [X ∪ L ∪O])| ({sT |T ∈ F} is an independent set)
≤ 2k(k + 1)|O ∪ L|

J

Let S = O ∪ L ∪ V (F0). By Lemma 15, we have

|S| ≤ (2k2 + 2k + 1)|O ∪ L| (6)

Let U be the graph obtained from K by contracting every tree of F \F0 into a single Steiner
vertex. For now, we only consider vertices in V (U) \S to be Steiner vertices and every vertex
of S is called non-Steiner. Graph U has treewidth at most k since it is a minor of K. Let
(T ,X ) be a tree decomposition of width at most k for U . We say (T ,X ) is a succinct tree
decomposition if:
(i) For every two adjacent nodes i and j in T , the two corresponding bags Xi and Xj satisfy

that Xi 6⊆ Xj and Xj 6⊆ Xi.
(ii) For every vertex v, let Tv be the subtree of T consisting of all nodes whose corresponding

bags contain v. For every leaf i of Tv, the vertex v must have at least one neighbor in Xi

that is not in any other bags of Tv.
From any tree decomposition (T ,X ), we can make it succinct by repeatedly applying the
two following operations: contracting edge ij of the tree T if the corresponding bags Xi and
Xj violate property (i) and removing v from the bag corresponding to any leaf of Tv that
violates property (ii). This implies the following observation.

SOSA 2017
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I Observation 16. We can make (T ,X ) succinct while keeping the underlying graph un-
changed.

Recall S is the union of O, L and F0. Now we introduce S-succinct tree decomposition. We
first root T at a non-leaf node r. Let α be a node in T and β1, β2, . . . , βj be the children of
α. If α is a leaf node, then j = 0. We call vertices in Xα \ (∪ji=1Xβi

) introduced vertices of
α. This implies that if α is a leaf node, then every vertex of Xα is an introduced vertex. We
call a vertex v in Xα a forget vertex if v is not in the bag corresponding to the parent of
α. We regard every vertex in the bag Xr corresponding to root node r as a forget vertex.
We call a vertex v dangling if it is both an introduced vertex and a forget vertex of α. We
note that a vertex v could be a forget vertex of only one node but it can be introduced in
multiple nodes. We say (T ,X ) is S-succinct if:
1. (T ,X ) is succinct.
2. There is no dangling Steiner vertex in (T ,X ).

We now transform a succinct tree decomposition (T ,X ) into S-succinct. Our trans-
formation affects both graphs U and K. Suppose that v is a dangling Steiner vertex of a
node α in T . For graph U , we remove v from U and the tree decomposition (T ,X ). We
then add edges between neighbors of v in U so that neighbors of v induce a clique in the
resulting graph. Since v is a dangling vertex, every neighbor of v is in Xα. Thus, adding
edges between neighbors of v still preserve the width of the tree decomposition. We note that
the removing v could make Xα become a subset of another bag Xβ for β being a neighbor of
α in T . In this case, we contract Xα to Xβ . For graph K, we remove all vertices of the tree
corresponding to v in F , and add edges between neighbors of T in the resulting graph so that
those neighbors induce a clique. By Observation 14, properties (1) and (3) in Definition 5
are preserved. We apply this modification to the resulting graph and its tree decomposition
until the resulting tree decomposition is S-succinct. Next lemma shows that an S-succinct
tree decomposition implies that we can bound the size of U by the size of S.

I Lemma 17. If graph U has an S-succinct tree decomposition (T ,X ) of width k, then
|V (U)| ≤ (4k2 + 8k + 5)|S|.

Proof. To prove this lemma, we will apply an amortized argument to bound the size of U .
That is, we will assign each Steiner vertex to a non-Steiner vertex (the vertex in S) such
that there are at most 4(k + 1)2 different Steiner vertices assigned to the same non-Steiner
vertex. Then the lemma follows.

We collect non-Steiner vertices into a set C during a post-order traversal of the tree T .
Initially, C = ∅. During the collection, we assign Steiner vertices to non-Steiner vertices in C
and may mark some leaf nodes of T as unavailable. Initially, leaf nodes of T are all marked
available. During the traversal, we would maintain the following invariant:

Marking invariant: For each non-leaf node α whose parent is not visited, there is
at least one available leaf of T that is a descendant of α.

For a node α, we denote by T [α] the subtree of T rooted at α and by X [α] the union of
bags corresponding to nodes in T [α]. Let α be the node of T that we are currently visiting.
We have three cases depending on the number of children of α: zero, one or at least two.
If α is a leaf node or has at least two children, we would show that every Steiner vertex in
X [α] is assigned to a non-Steiner vertex in C. However, if α has only one child, then there
will be a situation where we do not immediately assign the Steiner vertices in X [α] but delay
the assignment.
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Case 1: node α is a leaf. Let Y = Xα ∩ S. Since (T ,X ) is S-succinct, Y 6= ∅ and every
forget vertex of α is in S. We add vertices of Y into C, and assign all Steiner vertices in Xα

to one vertex in Y . Since |Xα| ≤ k + 1, there are at most k Steiner vertices assigned to that
vertex in Y .

Case 2: node α has exactly one child in T . Let L2 be the set of unassigned Steiner vertices
in X [α]. Note that there could be unassigned Steiner vertices in Xβ for some descendant β
of α. For this case, we have two subcases.

1. If Xα contains a vertex v ∈ S that is not in C or is a forget vertex of Xα, we add v into
C if v 6∈ C and assign all vertices in L2 to v. If there are other vertices of Xα in S that
are currently not in C, we add those into C as well.

2. Otherwise, we do nothing and visit the next bag. In this case, we call α a skipped node.
The marking invariant holds at α inductively since we do not mark any leaf node of T in
this case.

Case 3: node α has at least two children in T . Let β1, β2, . . . , βp be the children of α.
Recall that, by the marking invariant, each subtree T [βi] has at least one available leaf node.
Let γi be an available leaf node in T [βi] for 1 ≤ i ≤ p − 1. Let vi be a forget vertex of γi
in S for 1 ≤ i ≤ p − 1. Such vertex vi exists since T is S-succinct and γi is a leaf node.
Note that vi is non-Steiner. Let L3 be the set of unassigned Steiner vertices in X [α]. We
partition vertices of L3 into p− 1 groups, say Z1, Z2, . . . , Zp−1, so that their sizes differ by
at most one. We assign each group Zi to the vertex vi. Finally, we mark γi unavailable for
1 ≤ i ≤ p− 1. The marking invariant holds since α has at least two children. We also add
vertices of Xα ∩ S into C.

By the above three cases, we have:
I Observation 18. If α is not a skipped node, then every Steiner vertices in X [α] is assigned
to some non-Steiner vertex in C after we visit α.

We first bound the number of unassigned Steiner vertices in Case 2.
I Claim 19. For Case 2, we have |L2| ≤ (k + 1)2 for any node α.

Proof. Since |L2 ∩Xα| ≤ |Xα| ≤ k+ 1, we only need to bound |L2 \Xα|. To achieve this, we
will show that we can map each vertex in L2 \Xα to a vertex in S∩Xα such that there are at
most k different vertices that are mapped to the same vertex in S ∩Xα. Since |Xα| ≤ k + 1,
we have |L2| ≤ |L2 ∩Xα|+ |L2 \Xα| ≤ (k + 1) + k|S ∩Xα| ≤ (k + 1) + k(k + 1) = (k + 1)2.

Let v be a vertex in L2 \ Xα and v∗ be a node of T such that v is a forget vertex of
v∗. We will map v to a vertex u in S ∩Xα. Let β be the child of α. By Observation 18,
nodes in the subpath of T between v∗ and β are skipped. So node v∗ has degree two. Since
v is a forget vertex of node v∗, we know that v∗ must be a leaf node of Tv, the subtree
of T consisting of all the nodes whose corresponding bags contain v. By condition (ii) of
succinctness, vertex v must have a neighbor in S that is an introduced vertex of node v∗.
Let u be such a neighbor of v. Since v∗ is a skipped node, we know that u is in C before we
visit v∗. Thus, vertex u must be an introduced vertex of another node, say u∗, that we visit
before visiting v∗ in the post-order traversal of T . This implies u∗ 6∈ T [v∗]. Since nodes in
the subpath between v∗ and α all have degree two, node u∗ cannot be a descendant of α.
By the third condition of tree decomposition (Definition 12), vertex u must be in Xα. Also
since the nodes in the subpath between v∗ and α in T have degree two, vertex u can only be
introduced once in the subtree T [X], which means we only map forget vertices of v∗ to u.
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Since |Xv∗ | ≤ k + 1 and u ∈ Xv∗ , we have |L2 ∩Xv∗ | ≤ k, which implies there are at most k
vertices that could be mapped to u. J

I Claim 20. For Case 3, we have |L3| ≤ (pk + 1)(k + 1) for any node α with p children.

Proof. Let βi be the children of α for 1 ≤ i ≤ p. Since (T ,X ) has width at most k, we know
|L3 ∩Xα| ≤ k + 1. By the same argument as that for Claim 19, we can show that there are
at most k(k + 1) vertices in L3 that belong to X [βi] for each 1 ≤ i ≤ p. And then the claim
follows. J

Now we bound the number of Steiner vertices assigned to any vertex in C. We observe
that each time a non-Steiner vertex v is added in Case 1 or Case 3, there are at most k
Steiner vertices assigned to v. By Claim 19, there are at most (k + 1)2 Steiner vertices
assigned to one non-Steiner vertex in Case 2. Further, we only assign more vertices to a
non-Steiner vertex v in two situations: (a) when we visit a node α in Case 2 and vertex v is
its forget vertex and (b) when we visit a node α in Case 3 and vertex v is a forget vertex
of an available leaf node in T [α]. In the former case, by Claim 19, we assign to v at most
(k + 1)2 more vertices. In the latter case, the number of additional vertices we assign to v is
at most:⌈

(pk+1)(k+1)
p−1

⌉
≤ 2(k + 1)2 (p ≥ 2)

Thus, each vertex in C is assigned at most 4(k + 1)2 Steiner vertices. J

Let K ′ be obtained from U by uncontracting each Steiner vertex in U (of degree at most
k) to a tree in the forest F . We can bound the size and treewidth of K ′ by the following
lemma.

I Lemma 21. The size of K ′ is at most O(k5|O ∪ L|) and the treewdith of K ′ is at most
O(k2).

Proof. By Equation (6) and Lemma 17, we have:

|V (U)| ≤ (4k2 + 8k + 5)(2k2 + 2k + 1)|O ∪ L|

Since T has degree at most k, by Equation (4), |V (T )| ≤ 2k. Thus, we have:

|V (K ′)| ≤ 2k(4k2 + 8k + 5)(2k2 + 2k + 1)|O ∪ L|

Given a tree decomposition of width k of U , we replace each Steiner vertex sT by at most
2k vertices of V (T ). Therefore, the resulting decomposition is a tree decomposition of K ′
whose width is at most 2k(k + 1). J

By Lemma 21, graph K ′ is an exchange graph and has bounded treewidth. Thus, K ′ is
r-divisible and we have:

I Corollary 22. Algorithm 1 is a PTAS for Feedback Vertex Set problem in bounded treewidth
graphs.
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(a) (b)

Figure 1 An example shows that a graph obtained by uncontracting a matching from a planar
graph can have a big minor. Starting from an n × n grid, we double every edge and subdivide
parallel edges to make the graph simple (figure (a)). We then uncontract a matching from the
original grid vertices (figure (b)). The resulting graph has Kh minor where h = Ω(n). This example
is adapted from [9].

4.3 Exchange graph for minor-free graphs
We combine two ideas that we developed in Section 4.1 and Section 4.2 to construct an
r-divisible exchange graph when input graph G is minor-free. We assume that graph K is
connected since we can apply our argument to each component of K separately. We will
remove Steiner vertices from K while preserving properties (1) and (3) in Definition 5 until
|V (K)| = O(|L ∪O|). Our main tool is Observation 14.

We describe the high level construction here. We start with K and keep the trees of high
degree as we did in Section 4.2. For low-degree trees of Steiner vertices, we contract each tree
into a single Steiner vertex. Let U be the contracted graph. We then remove some Steiner
vertices from U and the corresponding tree from K. To choose which Steiner vertex to remove,
we apply the Robertson-Seymour decomposition theorem [30] to find a tree decomposition of
U where each bag of the tree can be almost embedded into a surface of constant genus. If
one bag in the decomposition is too big, then we will further contract Steiner vertices in the
surface embedded parts of the graph so that the number of Steiner vertices can be bounded
by a constant times of the number of non-Steiner vertices by Lemma 4. This is similar to the
idea in Section 4.1. After that, we have a tree decomposition such that each bag is not very
big. We then apply the idea in Section 4.2 to remove Steiner vertices. Finally, we uncontract
Steiner vertices in the resulting graph. However, different from Section 4.2, where we can
argue that the exchange graph has bounded treewidth (Lemma 21), the uncontracted graph
could have big minors. In Figure 1, we show an example where we uncontract a matching
from a planar graph of O(n2) vertices, we obtain a graph with Kn minor. Fortunately, we
are still able to argue that the uncontracted graph is r-divisible.

4.3.1 Robertson-Seymour Decomposition Theorem
Let (T ,X ) be a tree decomposition of G. Let α and β be two adjacent nodes in T . We define
E(α, β) to be the set of edges of the clique with vertex setXα∩Xβ . A torso of (T ,X ) is a graph
Hα such that V (Hα) = Xα for some node α in T , and E(Hα) = E(G[Xα]) ∪ E(α, β1) . . . ∪
E(α, βp) where β1, β2, . . . , βp are neighbors of α in T . We call edges in E(Hα) \ E(G[Xα])
virtual edges. The definition of torso implies that Xα ∩Xβi

, for any 1 ≤ i ≤ p, induces a
clique in Hα. We call cliques Hα[Xα ∩Xβ1 ], Hα[Xα ∩Xβ2 ], . . . ,Hα[Xα ∩Xβp

] legs of the
torso Hα. We note that legs of a torso may not be vertex-disjoint.

I Definition 23 (h-nearly-embeddable graph). A graph G is h-nearly-embeddable in a surface
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Σ with h boundary cycles C1, C2, . . . , Ch if there exists a subset of vertices, say A, and h+ 1
(possibly empty) subgraphs G0, G1, . . . , Gh of G such that:
1. |A| ≤ h.
2. G0 is embeddable in a surface Σ of genus at most h.
3. V (G0 ∪G1 ∪ . . . ∪Gh) = V (G) \A.
4. G1, G2, . . . , Gh are pairwise vertex-disjoint.
5. For each 1 ≤ i ≤ h, subgraph Gi has a width-h path decomposition with ` bags

Bi1, Bi2, . . . , Bi` such that:
a. There are ` consecutive vertices vi1, vi2, . . . , vi` ordered clock-wisely along Ci such that
vij ∈ Bij for all 1 ≤ j ≤ `.

b. V (G0) ∩ V (Gi) = {vi1, . . . , vi`}.
We call A the set of apices of G and call subgraphs G1, . . . , Gh vortices of G. We denote the
h-RS-nearly-embeddable decomposition of G by (A,G0, G1, . . . , Gh).

I Definition 24 (h-RS-decomposability). A graph G is h-RS-decomposable if G has a tree
decomposition (T ,X ) whose torsos are h-nearly-embeddable graphs.

We call such (T ,X ) an h-RS-tree decomposition of G.

I Theorem 25 (Robertson and Seymour [30]). If a graph G is H-minor-free, it is h-RS-
decomposable where h is a constant that only depends on |V (H)|.

We note that in an h-RS-tree decomposition, any leg of any torso has size at most h since
the torso is h-nearly-embeddable and since the leg is a clique.

I Lemma 26. If a graph G is h-RS-decomposable, there is a constant h′ that only depends
on h such that G excludes Kh′ as a minor.

Proof. Let h′ = max{38, 2h}. For a contradiction, assume Kh′ is a minor of G. Since
h-RS-decomposability is a minor-closed property, graph Kh′ has an h′-RS-tree decomposition
(T ,X ). It can be proved by the definition of tree decomposition that each bag in the tree
decomposition of a complete graph contains all vertices in the complete graph. Then any
torso in the decomposition (T ,X ) is a complete graph Kh′ . Ringel and Youngs [29] proved
that for all n ≥ 3, the genus of the complete graph Kn is d(n − 3)(n − 4)/12e. So Kh′

cannot be h-nearly-embeddable for h ≥ 19, and the decomposition (T ,X ) is not an h-RS-tree
decomposition, a contradiction. J

4.3.2 Exchange graph construction
Since K is a minor of G, it is H-minor-free. Recall that an H-minor-free of n vertices has
at most c0σH edges where c0 is a constant independent of H and σH = |V (H)|

√
log |V (H)|

(see Mader [25]). Also, recall F is a forest of Steiner vertices obtained by removing O ∪ L
from K. Let F0 be the set of trees of degree at least c0σH + 1 in F . Then we can bound the
size of F0 by the following lemma.

I Claim 27. The size of F0 is at most 2c0σH(c0σH + 1)|O ∪ L|.

Proof. The proof follows exactly the proof of Lemma 15 by replacing k with c0σH . J

Let S be the union of O, L and V (F0), that is

S = O ∪ L ∪ V (F0).
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By Claim 27, there is a constant c1 that only depends on |V (H)| such that:

|S| ≤ c1|O ∪ L| (7)

Let U be the graph obtained from K by contracting every tree of F \ F0 into a single
Steiner vertex. Herein, we call vertices of V (U) \ S Steiner vertices and call vertices of
S non-Steiner. Since U is a minor of K, it is H-minor-free. By Theorem 25, there is an
h-RS-tree decomposition (T ,X ) of U , where h only depends on |V (H)|. We root (T ,X ) at a
leaf node. The notion of forget, introduced and dangling vertices are carried from Section 4.2.
We will refine the tree decomposition T in two phases to obtain a canonical h0-RS-tree
decomposition where h0 = 2h. We define an operation ∆(v) for a Steiner vertex v in U as
follows: remove v and then add edges between its neighbors so that all the neighbors induce
a clique and the resulting graph is simple. During the processing, we maintain the properties
(1) and (3) in Definition 5 by the following lemma.

I Lemma 28. Assume U satisfies properties (1) and (3) in Definition 5. Let α be a node
in T , and let v be a dangling Steiner vertex of α. After applying the operation ∆(v), the
resulting graph satisfies properties (1) and (3) in Definition 5 and (T ,X ) is still a tree
decomposition for U .

Proof. Since v is a dangling vertex, all its neighbors are in the bag Xα. So (T ,X ) is
still a tree decomposition for U . By Observation 14, the resulting graph satisfies the two
properties. J

We start with a succinct decomposition, which can be obtained without changing U by
Observation 16. Recall the two properties of a succinct decomposition:
(i) For every two adjacent nodes i and j in T , the two corresponding bags Xi and Xj satisfy

that Xi 6⊆ Xj and Xj 6⊆ Xi.
(ii) For every vertex v, let Tv be the subtree of T consisting of all nodes whose corresponding

bags contain v. For every leaf i of Tv, the vertex v must have at least one neighbor in Xi

that is not in any other bags of Tv.

Phase 1:

In this phase, we will modify U and (T ,X ) so that they satisfy the following properties:
(iii) At least one forget vertex of every leaf node is in S.
(iv) For every node α of degree two in T , let Z1 and Z2 be the two legs of torso Hα. Then

we have either (a) Xα = V (Z1) ∪ V (Z2) or (b) there is one vertex in Xα that is also in
S \ (V (Z1) ∪ V (Z2)).

We first consider property (iii). Let α be a leaf node of T and β be the parent node of α.
By definition of torso, Hα[Xα ∩Xβ ] is a clique. Recall Xα \Xβ is the set of forget vertices of
α. If vertices in Xα \Xβ are all Steiner vertices, then Xα \Xβ is an independent set of Hα

since virtual edges of Hα are between vertices of Xα ∩Xβ . We apply ∆(v) for each vertex v
in Xα \Xβ . Since each vertex v is a forget vertex of a leaf node and also a dangling vertex,
by Lemma 28 the resulting graph satisfies properties (1) and (3) of the exchange graph. We
then remove node α from the tree T . This operation preserves h-nearly-embeddability of
Hβ since Xα ∩ Xβ forms a clique in torso Hβ . By Observation 16, we can still maintain
the succinctness of (T ,X ). We then apply this modification to all leaf nodes in the tree
decomposition so that property (iii) is satisfied.

We now consider property (iv). We need to further modify the tree decomposition
(T ,X ) and the underlying graph U . Our modification might increase the constant h for the
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decomposition by constant times. Let α be a node that violates property (iv). Then vertices
in Y = Xα \ (V (Z1) ∪ V (Z2)) are all dangling Steiner vertices. Recall there is no virtual
edge between vertices in Y , so Y is an independent set in Hα. For each vertex v in Y , we
apply ∆(v) and consider V (Z1) ∪ V (Z2) as the apex set of Hα (graphs G0, . . . , Gh are all
empty in this case). Since each vertex in Y is a dangling vertex, by Lemma 28, the resulting
graph satisfies properties (1) and (3) of the exchange graph. We consider two subcases:
1. V (Z1) 6= V (Z2). We can maintain succinctness by Observation 16. The apex set of

Hα now can have up to 2h vertices since each leg has at most h vertices. Thus, Hα is
2h-nearly-embeddable.

2. V (Z1) = V (Z2). If the resulting Xα is a subset of bags of its neighbors in T , then we
contract α to its one neighbor. Since Z1 and Z2 are cliques in the torso, the contraction
does not affect the h-nearly-embeddability of the neighbors of α. After the contraction,
the succinctness of (T ,X ) is preserved.

We can apply this modification to every node of T that violates property (iv). After that,
the result will become a h0-RS-tree decomposition for h0 = 2h. We note that all Steiner
vertices in the resulting graph U still have degree at least 3 after this Phase, since we only
remove Steiner vertices and since there is no edge between two Steiner vertices.

Phase 2:

In this phase, we further remove Steiner vertices from the surface embeddable part of torsos
while maintaining the previous properties and the constant h0 for the decomposition. We
only consider such node α that the surface embedded part G0 of Hα is not empty.

Let β1, β2, . . . , βp be the neighbors of α in T where βp is the parent of α. Let Z1, Z2, . . . , Zp
be legs of Hα where V (Zi) = Xα ∩Xβi for 1 ≤ i ≤ p. Let (A,G0, G1, . . . , Gh0) be an h0-
nearly-embeddable decomposition of Hα and C1, C2, . . . , Ch0 be the corresponding boundary
cycles of G0. Let Z = Z1 ∪Z2 ∪ . . .∪Zp and C = C1 ∪ . . .∪Ch0 . In this phase, we will make
each node in T satisfying the following property.

(v) If G0 is not empty, then every Steiner vertex in V (G0) \ (V (Z) ∪ V (C)) has degree at
least 3 in G0.

For each Steiner vertex v of V (G0) \ (V (Z) ∪ V (C)) that has degree at most 2 in G0, we
apply ∆(v). Since each v is a dangling vertex, by Lemma 28 the resulting graph satisfies
properties (1) and (3) of exchange graph. Since there are at most two neighbors of v in
G0, the operation ∆(v) will maintain the genus of G0 and the resulting torso Hα is still
h0-nearly-embeddable. This modification will maintain properties (iii) and (iv) in Phase 1
since we do not remove any non-Steiner vertex. We can also maintain the succinctness by
Observation 16.

We repeatedly apply the above modification to every node of T and call the final resulting
h0-RS-decomposition (T ,X ) S-succinct. Now we can bound the size of each bag in the
decomposition.

I Lemma 29. Let α be a node in the S-succinct tree decomposition (T ,X ) and Z1, . . . , Zp
be legs of torso Hα. Let Sα = S ∩Hα. Then there is a constant c2 that only depends on
|V (H)| such that V (Hα) ≤ c2|Sα ∪ V (Z1) ∪ . . . ∪ V (Zp)|.

Proof. Let (A,G0, G1, . . . , Gh0) be an h0-RS-nearly-embeddable decomposition of Hα and
Z = Z1 ∪ Z2 ∪ . . . ∪ Zp. If G0 = ∅, then V (Hα) = A has size at most h0, and the lemma
holds trivially for c2 = h0, since V (Z) and Sα cannot be empty at the same time. Thus, we
can assume that G0 is not empty.
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We first bound the number of Steiner vertices of G0. For each 1 ≤ i ≤ h0, we add a
vertex xi inside the disk enclosed by the boundary cycle Ci and then add an edge from xi to
each vertex of Ci. Let G′0 be the resulting graph. Note that if Hα has no vortex, we add
no vertex to G0 and G′0 = G0 in this case. Let X be the set of added vertices xi and Y be
the set of Steiner vertices of V (G′0) \ (X ∪ V (Z)). Since virtual edges are between vertices
of V (Z), set Y is an independent set of G′0. By property (v), if a vertex of Y is not in any
boundary cycle Ci, then it has degree at least 3 in G′0. Further, any vertex of Y ∩ Ci has
degree at least 3 in G′0 after we adding vertices in X. So every vertex of Y has degree at least
3 in G′0. By Lemma 4, we can bound the size of Y : |Y | ≤ (1 + 4h0)|V (G′0) \ Y |. We have:

|V (G0)| = |Y |+ |Sα ∪ V (Z)|
≤ (1 + 4h0)(|Sα ∪ V (Z)|+ |X|) + |Sα ∪ V (Z)| (V (G′0) \ Y = Sα ∪ V (Z) ∪X)
≤ (4h0 + 2)|Sα ∪ V (Z)|+ (1 + 4h0)h0 (|X| ≤ h0)
≤ (4h0 + 2 + (1 + 4h0)h0)|Sα ∪ V (Z)| (|Sα ∪ V (Z)| ≥ 1)
= O(h2

0)|Sα ∪ V (Z)|
(8)

Now we bound the size of vortices. By the definition of vortices, for any 1 ≤ i ≤ h0,
there is a path decomposition of width h0 for Gi where each bag of the path decomposition
contains exactly one distinct vertex of V (Ci). Since each bag has at most h0 vertices, we
have |V (Gi)| ≤ h0|V (Ci)| for 1 ≤ i ≤ h0. Since each vertex of Ci is shared by at most h0
other boundary cycles, we have:

|V (G1) ∪ V (G2) ∪ . . . ∪ V (Gh0)| ≤ h2
0|V (C1) ∪ . . . ∪ V (Ch0)| ≤ h2

0|V (G0)|. (9)

By combining Equation (8) and Equation (9), we have:

|V (Hα)| ≤ |V (A)|+ |V (G0)|+ |
∑h0
i=1 V (Gi)|

≤ |V (A)|+ (h2
0 + 1)|V (G0)| (Equation (9))

≤ |V (A)|+O(h4
0)|Sα ∪ V (Z)| (Equation (8))

≤ h0 +O(h4
0)|Sα ∪ V (Z)|

≤
(
h0 +O(h4

0)
)
|Sα ∪ V (Z)| (|Sα ∪ V (Z)| ≥ 1)

= O(h4
0)(|Sα ∪ V (Z)|)

The lemma follows by setting c2 = Ω(h4
0). J

I Lemma 30. If U has an S-succinct h0-RS-decomposition (T ,X ), then |V (U)| ≤ c3|S| for
some constant c3 that depends on |V (H)| only.

Proof. The proof follows the similar idea in the proof of Lemma 17. That is, we apply an
amortized argument to bound the size of U by the size of S.

We collect vertices of S into a set C during a post-order traversal of the tree T . Initially,
C = ∅. During the collection, we assign each Steiner vertex to the same vertex in C and
may mark some leaf nodes of T as unavailable. Initially, all leaf nodes of T are marked
available. We will show that there are only a constant number (depending on |V (H)|) of
distinct Steiner vertices assigned to any vertex in C. During the traversal, we would maintain
the following invariant:

Marking invariant: For each non-leaf node α whose parent is not visited, there is
at least one available leaf of T that is a descendant of α.
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For a node α, we denote by T [α] the subtree of T rooted at α and by X [α] the union of
bags corresponding to nodes in T [α]. Let α be the node of T that we are currently visiting.
We have three cases depending on the number of children of α: zero, one or at least two. If
α is a leaf node or has at least two children, we would show that every Steiner vertex in X [α]
is assigned to a vertex in C. However, if α has only one child, then there will be a situation
where we will delay the assignment. Let Sα = Xα ∩ S.

Case 1: node α is a leaf. Since (T ,X ) is S-succinct, Sα must contain at least one forget
vertex by property (iii). Thus, |Sα| ≥ 1. Since α is a leaf node, torso Hα has at most one
leg, say Z1. Since |V (Z1)| ≤ h0, by Lemma 29, there is a constant c2 such that:

|Xα| ≤ c2(|Sα ∪ V (Z1)|) ≤ c2(|Sα|+ h0) ≤ c2(h0 + 1)|Sα|

We add all vertices of Sα into C, and uniformly assign Steiner vertices of Xα to the vertices
of Sα. By the above inequality, each vertex of Sα is assigned at most c2(h0 + 1) Steiner
vertices. The marking invariant trivially holds.

Case 2: node α has exactly one child in T . Let β1 be the child of α and β2 be the
parent of α. Let Z1 and Z2 be two legs of torso Hα such that V (Zi) = Xα ∩ Xβi

for
i = 1, 2. By property (iv), we have either Xα = V (Z1) ∪ V (Z2) or there is a vertex of Xα in
S \ (V (Z1) ∪ V (Z2)). Let L2 be the set of unassigned Steiner vertices in X [β1]. Then we
have two subcases.

Case 2.1: there is a vertex of Xα in S \ (V (Z1)∪V (Z2)). Let Yα = Sα \ (V (Z1)∪V (Z2)).
Since |Zi| ≤ h0 for i = 1, 2, by Lemma 29, there is a constant c2 such that:

|Xα| ≤ c2(|Sα ∪ V (Z1) ∪ V (Z2)|) ≤ c2(|Yα|+ 2h0) ≤ c2(2h0 + 1)|Yα|

We then add all vertices of Yα into C, and uniformly assign those unassigned Steiner vertices
of Xα to the vertices of Yα. Further, we assign all vertices of L2 to an arbitrary vertex of Yα.

Case 2.2: Xα = V (Z1) ∪ V (Z2). Since each Zi has size at most h0, we know |Xα| ≤ 2h0.
Let S′α be the set of all vertices in Sα that are currently not in C or are forget vertices of
Xα. If S′α is not empty, we add all vertices of S′α \ C into C and uniformly assign those
unassigned Steiner vertices in Xα to vertices of S′α in C. We also assign vertices of L2 to an
arbitrary vertex in S′α. If S′α is empty, we skip the node α and do nothing. The marking
invariant holds at α inductively since we do not mark any leave of T in this case.

Case 3: node α has at least two children in T . Let β1, β2, . . . , βp be the neighbors of α
where βp is the parent of α in T . Recall that by the marking invariant, each subtree T [βi]
has at least one available leaf node. Let γi be an available leaf node in the subtree T [βi] for
1 ≤ i ≤ p− 2. Let vi be a forget vertex of γi in S for 1 ≤ i ≤ p− 2. Such vertex vi exists by
property (iii) of the S-succinctness.

Let Zi be the legs of torso Hα such that V (Zi) = Xα ∩ Xβi
for 1 ≤ i ≤ p and let

Wα = Sα \ (V (Z1)∪V (Z2) . . .∪V (Zp)). Note that Wα could be empty. By Lemma 29, there
is a constant c2 such that:

Xα ≤ c2(|Wα|+
p∑
i=1
|V (Zi)|) ≤ c2(|Wα|) + c2ph0 (10)
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We will add all vertices of Wα into C and then assign those unassigned Steiner vertices
of Xα to vertices of Wα so that each vertex of Wα is assigned at most c2 Steiner vertices.
By Equation (10), there are at most cph unassigned Steiner vertices in Xα. We uniformly
assign those remaining Steiner vertices to the vertices v1, v2 . . . , vp−2. For each vertex vi, the
number of Steiner vertices assigned in this way is at most:

⌈
c2ph0

p− 2

⌉
≤ 3c2h0 + 1 (11)

Let L3 be the set of all unassigned Steiner vertices of X [α]\Xα. We then uniformly assign
Steiner vertices of L3 to vertices v1, v2 . . . , vp−2. Finally, we mark node γi unavailable for
1 ≤ i ≤ p−2. The marking invariant holds since leaf γp−1 remains available. By construction,
we have:
I Observation 31. If node α is not skipped, then every Steiner vertices in X [α] is assigned to
a vertex in C after we visiting α.

We can bound the number of unassigned Steiner vertices in Case 2.
I Claim 32. For Case 2, we have |L2| ≤ 2h2

0 for any node.

Proof. The proof is similar to that of Claim 19. Let α be the current vertex we visit, β1 be
the child of α and Z1 be the leg of torso Hα so that V (Z1) = Xα ∩Xβ1 . We will map each
vertex of L2 into only one vertex of S ∩ V (Z1) such that there are at most 2h0 vertices of L2
mapped to the same vertex. Then the claim follows from |V (Z1)| ≤ h0.

Let v be a vertex of L2 and v∗ be a node of T such that v is a forget vertex of v∗. We
will map v to a vertex u in S ∩ V (Z1). By Observation 31, all nodes in the subpath between
v∗ and β1 of T are skipped. So they all have degree 2. Since v is a forget vertex of node v∗,
node v∗ must be a leaf of Tv, the subtree of T consisting of all nodes whose bags contain v.
By condition (ii) of succinctness, vertex v must have a neighbor in S that is an introduced
vertex of v∗. Let u be such a neighbor of v. Since v∗ is skipped, vertex u must be in the set
C when we visit v∗. So there must be another node u∗ such that u is an introduced vertex of
u∗ and we visit u∗ before v∗. Since vertex u is an introduced vertex of v∗, we know u∗ is not
in the subtree T [v∗]. Further, node u∗ cannot be in the subtree T [α] since all nodes between
v∗ and α have degree 2. Then by the third condition of tree decomposition (Definition 12),
vertex u must be in Xα and then V (Z1). Further, it can be introduced only once in the
subtree T [α].

Since v belongs to L2, we know v∗ is skipped, that is, v∗ belongs to Case 2.2. Then the
bag Xv∗ consists of only two legs and |Xv∗ | ≤ 2h0 since any leg of a torso has at most h0
vertices. So there are at most 2h0 vertices mapped to u, a vertex in S ∩ V (Z1). J

I Claim 33. For Case 3, we have |L3| ≤ 2(p− 1)h2
0 for any node α with p neighbors.

Proof. Let βi be the children of α for 1 ≤ i ≤ p − 1. By the same argument as that for
Claim 32, we can show that there are at most 2h2

0 vertices in L3 that belong to X [βi] for
each 1 ≤ i ≤ p− 1. This implies the claim. J

Now we are ready to bound the number of Steiner vertices assigned to any vertex in
C. When a vertex is added into C, the number of Steiner vertices assigned to it is at most
c2(h0 + 1) in Case 1, at most c2(2h0 + 1) + 2h2

0 in Case 2 by Claim 32 and at most c2 in
Case 3. After that, we only assign more Steiner vertices to a vertex v in two situations: (a)
when we visit a node α in Case 2.2 and vertex v is a forget vertex of α and (b) when we

SOSA 2017



23:20 Simple Local Search is a PTAS for Feedback Vertex Set in Minor-free Graphs

visit a node α in Case 3 and vertex v is a forget vertex of an available leaf node which is a
descendant of α. In the former case, we assign at most 2h0 + 2h2

0 Steiner vertices to v where
2h0 vertices are from Xα in Case 2.2 and 2h2

0 vertices are from L2 by Claim 32. In latter
case, the number of vertices we assign to v is at most:

3c2h0 + 1 +
⌈

2(p−1)h2
0

p−2

⌉
≤ 3c2h0 + 4h2

0 + 1 (p ≥ 3)

Thus, each vertex in C is assigned at most O(c2h0) Steiner vertices for c2 = Ω(h4
0). The

lemma follows by setting c3 = Ω(h5
0). J

Now we obtain graph K ′ from the resulting U by uncontracting each Steiner vertex to
its corresponding tree in F \ F0. This K ′ is our final exchange graph.

I Lemma 34. If G is an H-minor-free graph, then K ′ is an r-divisible exchange graph for
Feedback Vertex Set problem in G.

Proof. Let U be the graph obtained after the two-phase modification. By Equation (7) and
Lemma 30, we have:

|V (U)| ≤ c3|S| ≤ c3c1(|O ∪ L|)

where c1 and c3 are two constants that depend on |V (H)| only. Since each Steiner vertex in
U has degree at most OH(1), its corresponding tree in F \F0 has size OH(1) by Equation (4).
Thus, we have |V (K ′)| = OH(|O ∪ L|), which implies K ′ is an exchange graph.

Now we construct an r-division of K ′. Since U has an h-RS-decomposition where h only
depends on |V (H)|, graph U is Kh′-minor-free by Lemma 26, where h′ only depends on h
and then |V (H)|. So by Theorem 2, graph U has an r-division. We start from an r-division
of U . If a Steiner vertex is a boundary vertex, we add every vertex in its corresponding tree
to the boundary. Otherwise, we add every vertex of the corresponding tree to the region
containing the Steiner vertex. Since each tree has OH(1) size, the result is an r-division of
K ′. J

5 Negative results

We show by examples, that the simple local search with constant exchanges cannot give a
PTAS for these two problems in planar graphs. Indeed, our examples show that local search
cannot even give a constant approximation. The examples can be constructed from a k × k
grid. See Figure 2.
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