Final Solution
 SENG 474/CSC 578D

Question 1

(a)

$$
M^{T} M=\left[\begin{array}{ccc}
1 & 0 & 1 \tag{1}\\
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]
$$

(b) Compute the eigenvector and eigenvalue of $M^{T} M$. We have:

$$
\begin{equation*}
\operatorname{det}\left(M^{T} M-\lambda I\right)=0 \Rightarrow \lambda^{2}-7 \lambda+6=0 \Rightarrow \lambda_{1}=6, \lambda_{2}=1 \tag{2}
\end{equation*}
$$

The two corresponding eigenvectors are $\mathbf{v}_{1}=\left[\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right]^{T}$ and $\mathbf{v}_{2}=\left[\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right]^{T}$.

Question 2

(a)

$$
\begin{equation*}
\mathbf{v}_{1}=\frac{M \mathbf{v}_{0}}{\left\|M \mathbf{v}_{0}\right\|}=[1 / 3,2 / 3,2 / 3]^{T} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{v}_{2}=\frac{M \mathbf{v}_{1}}{\left\|M \mathbf{v}_{1}\right\|}=[1 / 3,2 / 3,2 / 3]^{T} \tag{4}
\end{equation*}
$$

(b) Power Iteration algorithm of part (a) stop at \mathbf{v}_{1}, so it is the eigenvector and the largest eigenvalue is:

$$
\begin{equation*}
\mathbf{v}_{1}^{T} M \mathbf{v}_{1}=9 \tag{5}
\end{equation*}
$$

Question 3

(a) The probability of observing the network is $f(p=) p^{7}(1-p)^{3}$. Thus, we have:

$$
\begin{equation*}
\frac{\partial f(p)}{\partial p}=7 p^{6}(1-p)^{3}-3 p^{7}(1-p)^{2}=p^{6}(1-p)^{3}(7-10 p)=0 \Leftrightarrow p=7 / 10=0.7 \tag{6}
\end{equation*}
$$

(b) The probability of observing the network is:

$$
\begin{equation*}
f\left(p_{X}, p_{Y}\right)=p_{X}^{4}\left(1-p_{X}\right) p_{Y}^{2}\left(p_{X}+p_{Y}-p_{X} p_{Y}\right)(1-\epsilon)^{2} \tag{7}
\end{equation*}
$$

$f\left(p_{X}, p_{Y}\right)$ is an increasing function of p_{Y}, thus, it is maximum when $p_{Y}=1$. So we should chose p_{X} that maximize $p_{X}^{4}\left(1-p_{X}\right)$, which solves to $p_{X}=4 / 5=0.8$.

Question 4

(a) The Laplaian matrix:

$$
L=\left[\begin{array}{ccc}
1 & -1 & 0 \tag{8}\\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

(b) The eigenvector \mathbf{v}_{2} would satisfy:

$$
\begin{equation*}
L \mathbf{v}_{2}=\mathbf{v}_{2} \tag{9}
\end{equation*}
$$

that solves to $[1,0,-1]^{T}$

Question 5

(a) We have:

$$
\begin{align*}
& \text { Betweenness }(D C)=3 \\
& \text { Betweenness }(C A)=1 \tag{10}\\
& \text { Betweenness }(C B)=1 \\
& \text { Betweenness }(A B)=0
\end{align*}
$$

(b) Final betweeness:

$$
\begin{align*}
& \text { Betweenness }(A B)=1 \\
& \text { Betweenness }(A C)=2 \\
& \text { Betweenness }(B C)=2 \tag{11}\\
& \text { Betweenness }(C D)=3
\end{align*}
$$

Question 6

(a) We have:

$$
U_{0} V_{0}=\left[\begin{array}{ll}
1 & 0 \tag{12}\\
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 4 & 6 \\
2 & 5 & 6 \\
1 & 3 & 4
\end{array}\right]
$$

Thus,

$$
\begin{equation*}
R M S E=\sqrt{\frac{(1-2)^{2}+(6-4)^{2}+(5-1)^{2}+(6-3)^{2}+(1-2)^{2}+(3-4)^{2}}{6}}=\sqrt{\frac{16}{3}} \tag{13}
\end{equation*}
$$

(b)

$$
\left[\begin{array}{ll}
1 & x_{1} \tag{14}\\
2 & x_{2} \\
1 & x_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 2+x_{1} & 2+2 x_{1} \\
2 & 4+x_{2} & 4+2 x_{2} \\
1 & 2+x_{3} & 2+2 x_{3}
\end{array}\right]
$$

Thus,

$$
\begin{equation*}
R M S E=\sqrt{\frac{(1-2)^{2}+\left(2 x_{1}-2\right)^{2}+\left(x_{2}-3\right)^{2}+\left(2 x_{2}+1\right)^{2}+(1-2)^{2}+\left(x_{3}-2\right)^{2}}{6}} \tag{15}
\end{equation*}
$$

which is minimum when $x_{1}=1, x_{2}=-1, x_{3}=2$.

Question 7

(a) The balanced algorithm in the worst case sells $x x y y z z$ to $B C B C$, thus has revenue 4, while the optimal algorithm has revenue 6 , so the competitive ratio is $4 / 6=2 / 3$.
(b) Suppose that A has budget $1001, B$ has budget $1000, A$ bids $1 \$$ for x while B bids 1000 . The query sequence is just x. The balance algorithm will sell x to A, making $1 \$$ of revenue, while the optimal algorithm would sell x to B. Thus the competitive ratio is $1 / 1000=10^{-3}$.

Question 8

(a) The centroids are $(3,9),(6,5)$ and $(7,9)$.
(b) Three clusters are:

$$
\begin{align*}
& C_{1}=\{(3,9),(4,10),(4,8)\} \\
& C_{2}=\{(7,9),(6,10),(6,8)\} \tag{16}\\
& C_{3}=\{(4,6),(4,5),(6,6),(6,5)\}
\end{align*}
$$

Question 9

(a) The transition matrix:

$$
M=\left[\begin{array}{ccc}
0 & 0 & 1 / 2 \tag{17}\\
1 & 0 & 0 \\
0 & 1 & 1 / 2
\end{array}\right]
$$

(b)

$$
\begin{align*}
& \mathbf{v}_{1}=M \mathbf{v}_{0}=\left[\begin{array}{llc}
0 & 0 & 1 / 2 \\
1 & 0 & 0 \\
0 & 1 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]=\left[\begin{array}{l}
1 / 6 \\
1 / 3 \\
1 / 2
\end{array}\right] \tag{18}\\
& \mathbf{v}_{2}=M \mathbf{v}_{1}=\left[\begin{array}{ccc}
0 & 0 & 1 / 2 \\
1 & 0 & 0 \\
0 & 1 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
1 / 6 \\
1 / 3 \\
1 / 2
\end{array}\right]=\left[\begin{array}{c}
1 / 4 \\
1 / 6 \\
7 / 12
\end{array}\right] \tag{19}
\end{align*}
$$

Question 10

(a) The page rank score of t_{1}

$$
\begin{equation*}
y=\frac{x}{1-\beta^{2}}+\frac{\beta}{1+\beta} \frac{m}{M}=1.5837 \tag{20}
\end{equation*}
$$

assume that $(1-\beta) / N$ contribution to y is ignored. (If you count $(1-\beta) / N$ contribution of y, then the number just change very little, something like 1.5838)
(b) Let y be the page rank score of t_{1} (and t_{2}). Then each supporting page gets:

$$
\begin{equation*}
s=\beta \frac{2 y}{2 m}+\frac{(1-\beta)}{N}=\frac{\beta y}{m}+\frac{(1-\beta)}{N} \tag{21}
\end{equation*}
$$

Each supporting page contribute $s / 2$ to each page t_{1}, t_{2}. Thus, t_{1} gets:

$$
\begin{equation*}
\frac{\beta}{2}\left(\frac{\beta y}{m}+\frac{(1-\beta)}{N}\right) \tag{22}
\end{equation*}
$$

from each supporting page. Since there are $2 m$ supporting pages link to t_{1}, we have:

$$
\begin{equation*}
y=x+2 m \frac{\beta}{2}\left(\frac{\beta y}{m}+\frac{(1-\beta)}{N}\right) \tag{23}
\end{equation*}
$$

which solves to:

$$
\begin{equation*}
y=\frac{x}{1-\beta^{2}}+\frac{\beta}{\beta+1} \frac{m}{N} \tag{24}
\end{equation*}
$$

Conclusion: the linking does not change the page ranks of t_{1}, t_{2}.

