How to find dead ends efficiently

A node is a dead end if it has no out-link, or all of its out-links point to dead ends only. To find dead end efficiently (in O(n+m) time), you should use two arrays (of lists):

- Array N^+ , where $N^+[i]$ is a *list* of nodes that *links to i*. In other words, $N^+[i]$ is the set of in-neighbors of *i*. Note that $len(N^+[i])$ is the number of in-links of *i*.
- Array N⁻, where N⁻[i] is a list of nodes that i links to. In other words, N⁻[i] is the set of out-neighbors of i. Note that len(N⁻[i]) is the number of out-links of i.

In addition, you should use an array D to store the out-degree of i. That is, $D[i] = leng(N^{-}[i])$. Dead ends would have D[i] = 0. Also, you should use a Queue, say q (a FIFO queue) to store temporary dead-ends during the execution of the algorithm below:

$\begin{bmatrix} E_{\text{IND}} D_{\text{E}} \land D_{\text{E}} D_{\text{E}} O(U, E) & N^{+} & N^{-} \end{bmatrix}$
FINDDEADENDS $(G(V, E), N^+, N^-)$
initialize array D so that $D[i] = 0$ for all node i
initialize an empty Queue q .
for each node $i \in V$
$D[i] = len(N^{-}[i])$
$\mathbf{if} \ D[i] = 0$
put i to q // i is a dead end
initialize an empty list L
while q is not empty
$i \leftarrow \text{pop an element from } q$
if i is not in L
append i to the end of L
for each j in $N^+[i]$
$D[j] \leftarrow D[j] - 1$ // remove i will decrease out-deg of j
${f if} D[j]=0$ // j is a new dead end
put j to Queue q
return L

The return list L would be the set of dead ends. Their order in L is their removal order. Tip: to check whether a node i in L, you just need to use a boolean array, say M. Initially, every node i has M[i] =False. Every time you put a node i to L, mark M[i] =True.