
How to find dead ends efficiently

A node is a dead end if it has no out-link, or all of its out-links point to dead ends only.
To find dead end efficiently (in O(n + m) time), you should use two arrays (of lists):

• Array N+, where N+[i] is a list of nodes that links to i. In other words, N+[i] is the
set of in-neighbors of i. Note that len(N+[i]) is the number of in-links of i.

• Array N−, where N−[i] is a list of nodes that i links to. In other words, N−[i] is the
set of out-neighbors of i. Note that len(N−[i]) is the number of out-links of i.

In addition, you should use an array D to store the out-degree of i. That is, D[i] =
leng(N−[i]). Dead ends would have D[i] = 0. Also, you should use a Queue, say q (a FIFO
queue) to store temporary dead-ends during the execution of the algorithm below:

FindDeadEnds(G(V,E), N+, N−)
initialize array D so that D[i] = 0 for all node i
initialize an empty Queue q.
for each node i ∈ V

D[i] = len(N−[i])
if D[i] = 0

put i to q // i is a dead end

initialize an empty list L
while q is not empty

i← pop an element from q
if i is not in L

append i to the end of L
for each j in N+[i]

D[j]← D[j]− 1 // remove i will decrease out-deg of j
if D[j] = 0 // j is a new dead end

put j to Queue q
return L

The return list L would be the set of dead ends. Their order in L is their removal order.
Tip: to check whether a node i in L, you just need to use a boolean array, say M .

Initially, every node i has M [i] = False. Every time you put a node i to L, mark M [i] =
True.

1


