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Abstract

We show that the greedy spanner algorithm constructs a (1+¢)-spanner of weight e_o(d)w(MST)
for a point set in metrics of doubling dimension d, resolving an open problem posed by Got-
tlieb [11]. Our result generalizes the result by Narasimhan and Smid [15] who showed that a
point set in d-dimension Euclidean space has a (1+¢)-spanner of weight at most e =@ w(MST).
Our proof only uses the packing property of doubling metrics and thus implies a much simpler
proof for the same result in Euclidean space.

1 Introduction

For a real value t > 1, a t-spanner of an edge-weighted graph G is a subgraph S such that dg(z,y) <
ds(z,y) <t-dg(z,y) where dg and dg denote the shortest path distance functions for vertex pairs
in G and S, respectively. In this work, we study t-spanners of a metric space; more precisely, we
study t-spanners of the corresponding metric graph which is the complete graph on the set of points
in the metric where the weight of each edge pq denotes the metric distance between p and q. When
we refer to metric spaces in the following, we assume them to be finite.

Spanners have been used in many applications including distributed systems, communication
networks, robotics and more |1,/15]. In this work, we are interested in (1+¢€)-spanners (herein referred
to simply as spanners) of geometric and metric graphs where € < 1 denotes a fixed constant. One
way to measure the quality of spanners is by their lightness which is the ratio of the weight of
spanner’s edges to the weight of a minimum spanning tree of G. One prominent application of
spanners with constant lightness is in designing faster polynomial time approximation schemesﬂ
(PTAS) for the TSP problem [4}/5,[11,[13}[16]. A classical spanner algorithm [1] constructs a (1 +¢)-
spanner of a graph GG by considering edges in non-decreasing order of weight and adding the current
edge pq to the spanner if there is not already a p-to-g path of weight at most (1 + ¢) times the
weight of pg; the resulting spanner is called the greedy (1 + €)-spanner of G.

The doubling dimension [3,/12] of a metric space is the smallest d such that every ball of radius
7 is covered by 2¢ balls of radius most 5. In this work, we show that:

Theorem 1. The greedy (1 + €)-spanner of a metric space of doubling dimension d has lightness
—0(d)
€ .

Geometric spanners have a rich history. In 2-dimensional Euclidean space, O(1)-spanners of
lightness O(1) have been known since the late 80s [1,/14]. Das, Heffernan and Narasimhan [7]
sketched an intricate argument showing that t-spanners for any fixed ¢ > 1 in 3-dimensional Eu-
clidean space have lightness O(1). Their main contribution is an analysis of the leap-frog property of

LA polynomial-time approximation scheme is an algorithm which, for a fixed error parameter e, finds a solution
whose value is within 1 + € of optimal in polynomial time.



the spanner edges found by the greedy algorithm. Later, Das, Narasimhan and Salowe [§] sketched
a generalization of the proof by Das, Heffernan and Narasimhan [7] to show that t-spanners for
any fixed ¢ > 1 in d-dimensional Euclidean space have lightness O(1). However, the dependency
of the lightness on ¢ and d was not explicitly computed. Rao and Smith |16] redid the analysis of
Arya, Das, Mount, Salowe and Smid [2] to show that the constant in the work of Das, Heffernan
and Narasimhan [7] is (%)O(d). Narasimhan and Smid [15] devoted a 60-page chapter of Geometric
Spanner Networks to give full details of the analysis of the lightness of greedy spanners. They show
that greedy spanners for d-dimensional Euclidean space have lightness e 9@ their proof heavily
relies on the geometry of FKuclidean space. Our Theorem [I| immediately implies a simpler proof
for the same lightness bound in Euclidean space; it is well-known that a point set in d-dimensional
Euclidean metric has doubling dimension ©(d). Instead of relying on the leap-frog property as in
previous works, which is not easy to analyze in doubling metrics, we only use the simple packing
property of the doubling metrics where Euclidean space is a special case.

Spanners in doubling metrics were first considered by Gao, Guibas and Nguyen [10] who showed
that a n-point set in doubling dimension d has a spanner of e~ 9@y edges. By analyzing the greedy
algorithm, Smid [17] showed that greedy spanners have O(n) edges and O(logn) lightness. Beating
the O(logn) lightness bound of Smid [17] had been an important open problem until the recent
work by Gottlieb [11], who showed that a metric of doubling dimension d has a spanner of lightness
(g)o(d). We note that the construction of Gottlieb [11] is non-greedy, conceptually involved and
takes O(n log? n) time. However, two questions remain open. First, can we design a spanner of
lightness e 9@ to match the bound in Euclidean space? Second, is there a more refined analysis of
the greedy algorithm to achieve the bound e~ 9(®? Gottlieb [11] asked the first question in his paper.
The second question was partially addressed by Filtser and Solomon [9], who showed that greedy
spanners in doubling metrics (as well as graph classes closed under edge removal) are existentially
optimal: if there is a spanner construction of lightness bound I(e,d), then greedy spanners have
lightness O(l(e,d)). Combined with Gottlieb’s results [11], the existential optimality implies that

greedy spanners have (%)O(d) lightness. In this paper, we resolve both questions affirmatively by
presenting a refined and comparatively simple analysis of the greedy algorithm. Our result, in
combination with the result of Filtser and Solomon [9], implies an O(nlogn) time algorithm to find

a spanner of lightness =@,

1.1 Techniques

Our analysis is built primarily upon our result [5] in minor-free graphs which in turn is based on the
techniques of Chechick and Wulff-Nilsen [6] for general graphs. We briefly review the H-minor-free
techniques [5] here, highlighting new ideas required for doubling metrics. The first step is to reduce
the problem on the input graph to the same problem on graphs that have unit-edge-weight minimum
spanning trees (MSTs), by rounding small-weight edges and subdividing large-weight edges. Then
the greedy algorithm is applied to this slightly modified graph making the construction non-greedy
as a whole. However, in the setting of doubling metrics, we cannot use the same simplification
since rounding changes the metric. We instead directly analyze the greedy spanner of the input.
To analyze the spanner of an H-minor free graph, [5] uses iterative clustering. Spanner edges
are partitioned into log% set and then the total weight of each set is bounded separately; this
induces the log% factor in the lightness. Each set consists of spanner edges in an exponential scale

2Here, log denotes the base 2 logarithm.



of many levels. First, a non-negative credit c(e) is assigned to each MST edge of unit weight;
c(e) log % is also the lightness of the spanner. In each level, clusters are constructed iteratively from
clusters of the previous level; level-1 clusters are constructed directly from the MST. An invariant
is maintained that each cluster must have some amount of credit to pay for spanner edges in their
level. Credits of level-1 clusters are taken directly from MST edges. Credits of level-i clusters are
taken from credits of clusters of level ¢ — 1 and MST edges connecting those lower-level clusters.
However, to pay for the spanner edges, level-i clusters cannot take all credits from level-(i — 1)
clusters. Instead, it is guaranteed that on average, each level-(i — 1) cluster has a non-trivial
amount of credit left to pay for spanner edges. The minor-free property is then used to argue that
each cluster on average must pay for only a constant number of spanner edges in each level.

Our new argument is also based on our earlier iterative cluster construction. However, we rely
on the packing property of doubling metrics (defined below) to show that each cluster needs to pay
for a constant number of spanner edges in the same level. This property of doubling metric spanners
allows us in fact to simplify the cluster construction that was used for H-minor free graphs.

Let G(V, E) be the graph representing a metric of doubling dimension d. For each edge e € F,
we define the weight function w(e) to be the distance between its endpoints in the metric. Let
n = |V(G)| and m = |E(G)|. We directly analyze the spanner produced by the greedy algorithm.
For a review of the greedy spanner algorithm, see Appendix [B| Let S be the greedy spanner of G.
Smid [17] showed (in two pages) that:

Lemma 2. |E(S)| < §(e)n where §(e) = 2=,
The following packing property of doubling metric is well-known (see [17]):

Lemma 3 (Packing property). A point set X of a metric of doubling dimension d that is contained
in a ball of radius R and for every x #y € X, d(x,y) > r, has | X| < (%)d.

2 Assigning credits to MST edges

IST)

Let wg = w(l\f be the average weight of an MST edge. We first bound the total weight of edges
n—1 g g g g g

that have weight at most wy.

Claim 4. Let Lg be the set of edges of S of weight at most wo. Then, w(Lg) < 20(e)w(MST).

L ,
Proof. w(Lg) < wy|Lg] eména wod(e)n = = 1\islT)5(e)n < 20(e)w(MST). O

n

We now focus on bounding the total weight of edges of weight at least wg in S. We subdivide
and allocate credits to MST edges such that every MST edge has weight at most wg and at least
c(€)wg credits where c¢(e) is a constant that only depends on e and will be specified later. We will
guarantee that the total allocated credit is O(c(e))w(MST) where O(c(e€)) is also the lightness of
the spanner. First, we subdivide every MST edge e of weight more than wg into [%s)] new edges
with equal weights summing up to w(e); note that each new edge has weight at most wp. Letting
S” be the new graph, we have w(MST(S")) = w(MST). We then allocate c(e)wy credits to each
MST edge of S’.

Claim 5. The total credit allocated to the MST edges of S’ is at most 2¢(e)w(MST).



Proof. The total credits assigned to MST edges of S’ is:

c(e)wo| EMMST(S))| < c(e)wo Y e, SC(E)w0< 3 () +1>)

censt 0 censt 0
= c(e)w(MST) + c(e)wo(n — 1) = 2¢(e)w(MST)

3 Iterative Clustering

Let Jy = {e € 8wy < w(e) < 2%} We first bound the weight of Jy and pay for edges in Jy
separately. The purpose is to simplify the base case in the inductive amortized argument that we
present below.

Claim 6. w(Jy) < 2294 (MST).

€

Proof.
wii)= Y w(e) 22 s om0 < 2 vsT) O

€ €

W

e€Jo,w(e)>wp

Let I. = [log1] and I, = [logn]. Note that the longest distance between any two vertices in
S’ is at most n - wy. We partition the spanner edges (of weight at least wg) of S’ into I, - I sets
{II},0 <i < I, — 1,0 < j < I. — 1} where each edge e € I has weight in the range (2 wy, 2 o).
Foreach 0 <5 < I, —1, let

€

In—1

s;=Jm (2)
=0

Lemma 7. For each 0 < j < I. — 1, there is a set of spanner edges B such that w(B) < e 0W) .
w(MST) and w(S; \ B) < e 9@Dyw(MST).

It is not hard to see that Lemma [7] directly implies Theorem [I] Thus, we only focus on proving
Lemma IEI for a fixed j. We refer to edges of II/ as edges in level i (Equation . Let ¢; = 2];1@00.
Similar to our analysis for H-minor free graphs [5], we construct a set of clusters, which are
subgraphs of S’, for each level and guarantee inductively two diameter-credits invariants:

DC1 A cluster of level i of diameter k has at least ¢(e) - max{k, %} credits.

DC2 A cluster of level i has diameter at most g¢; for some constant g > 2 (specified later).

A cluster of level i, say C;, is the union of a subset of clusters in level i — 1 connected by
MST and level-i spanner edges. Clusters of level ¢ — 1 are referred to as e-clusters. To satisfy
DC1, we assign the credits from e-clusters in C; and the MST edges connecting the e-clusters to
C;. However, we need to group e-clusters in such a way that there are some extra e-clusters whose
credits are not needed to maintain DC1 for C;. We will use credits of these extra e-clusters to pay
for level-i spanner edges incident to every e-cluster in C;. The credit lower bound ¢/; /2 (DC1) helps
us achieve the goal.



To guarantee the diameter-credit invariants for level 0, we greedily break the MST into com-
ponents (level-0 clusters) of diameter at least £y and at most 4¢y. Recall £y = 27T wy < 2% To
guarantee DC1, we use the credits of MST edges in the longest path of each cluster. Since the
credit of each MST edge is at least its length, DC1 is satisfied. Invariant DC2 follows directly from
the construction. Note that we have already accounted for the weight of spanner edges of Ey in
Claim [6l

3.1 Constructing higher level clusters

We construct clusters of level i from the e-clusters of level i — 1. We assume that the stretch of the
spanner is 1+ se for some constant s (independent of €) that we will pick sufficiently big to make our
claims below hold. Furthermore, we assume that € is bounded from above by a sufficiently small
positive constant. We call vertices of V(S”) \ V(S) virtual vertices. We call a cluster virtual of it
only contains virtual vertices and non-virtual otherwise. Let K(Ce, E;) be the multigraph obtained
by taking the subgraph of G consisting of e-clusters and spanner edges in E; and contracting each
e-cluster into a single vertex. Let £ = ¢;.

Lemma 8. K(C, E;) is a simple graph of degree e 9@,

Proof. We leave the details of the proof that K(C, E;) is simple to Appendix To show the
degree bound, first note that virtual clusters are isolated vertices in K(C, E;) since virtual vertices
are subdividing vertices incident to edges of weight at most wgy. For each non-virtual e-cluster, we
designate a non-virtual vertex to be its center. Assuming w.l.o.g. that ¢ < % and picking s > 12g+4,
we get the following claim:

Claim 9. Let Cy,Cs, C3 be three e-clusters that have x1, xo, x3 as centers. Suppose that Cy, C3 are
neighbors of Cy in K. Then, dg(xi, x;) > €l for any 1 <i# j < 3.

Proof. Suppose y1y3 and 2129 are two level-i spanner edges such that y1,21 € C1, 20 € Co,y3 € Cs.
We assume, w.l.o.g, that w(y1y3) < w(z122). Recall £/2 < w(y1y3), w(z122) < L.

We only present the proof showing that dg(ze,z3) > €f since a similar but simpler proof
holds for dg(z1,z2) and dg(z1,z3). We assume that dg(x2,x3) < €l. Let @ be the z-to-zo
path that consists of: (i) a shortest z1-to-y; subpath in C1, (ii) edge y1ys, (iii) a shortest ys-to-
x3 subpath in Cj3, (iv) a shortest z3-to-zy path in S and (v) a shortest xa-to-z2 subpath in Cs.
Since in the greedy spanner, edges are added by increasing weight, by the time z1zo is added,
ds(z2,x3) < (1+ se)dg(z2,x3) < (14 se)el. Thus, we have:

w(Q) < gel +w(y1ys) + gel + (1 + se)el + gel
(3g + 1+ se)el + w(y1ys3)

2(3g + 1+ se)ew(z122) + w(z122)

(

(69 + 2+ 2s€)e + 1) w(z122)

VARRVARNVAN

Since € < 1, we have s > 12g + 4 > (6g + 2)/(1 — 2¢) and hence 6g + 2 4+ 2se < s. But then

w(Q) < (14 s-€)w(z122); contradicting that z1 25 is a spanner edge. O

Let Cy be an e-cluster with neighbors C1,Cs,...,C, in K. Let X = {zo,1,...,2,} where ;
is the center of C;,0 < i < p. We show below that dg(zg,z;) < 3¢ for every 1 < i < p when € is



sufficiently small. Thus, X is contained in a ball centered at zp of radius at most 3¢. By Claim [9]
dg(xi, xj) > el for every 0 < i < p. Thus, by Lemma |X| < e Od),

We now show that dg(zg, z;) < 3¢ for a fixed ¢ with 1 <+ < p. Let yoy; be the spanner edge in
E; connecting Cy and C; in K. Then the xy-to-z; path P consisting of an zg-to-yg shortest path in
Co, edge yoy; and a y;-to-z; shortest path in C; has length at most 2gef + £ < 3¢ when ¢ is smaller
than 1/g. O

Let T be a tree of e-clusters connected by MST edges. We say an e-cluster of T is branching if
it is incident to at least three MST edges in 7. Let P be a path of 7. We define the diameter of P,
denoted by diam(P), to be the diameter of the subgraph of S” formed by edges inside e-clusters and
MST edges connecting e-clusters of P. We define effective diameter of P, denoted by ediam(P),
to be the diameters of e-clusters in P. Since e-clusters have diameter at least wg (by construction
of the base case) which is at least the weight of edges connecting them in P, we have:

Observation 10. diam(P) < 2ediam(P).

We define the effective diameter of a subtree T’ of T to be the effective diameter of the diameter
path of 7’. We construct clusters in four phases:

Phase 1: Branching e-clusters. We have two steps. Since our construction is recursive, we
update the set branching vertices of T after each recursive step. (Step 1) Let 7’ be a subtree of T
of effective diameter at least ¢ and at most 2¢ that contains a branching vertex X and its neighbors
so that X is still branching in 7’. We group e-clusters and MST edges of 7’ as a new level-i
cluster. We remove 7" from 7 and repeat until every component of 7 either has effective diameter
less than £ or is a path of e-clusters, called a cluster path, of effective diameter at least £.

(Step 2) Let P be a cluster path of diameter at least £. Let X be the set of internal e-clusters
of P such that X has at least one MST edge, say e, to a level-i cluster, say C, formed in Step 1.
Observe that X is branching before execution of Step 1 and the removal of subtrees of 7 in Step 1
reduces degree of X to 2. We augment C' with X and e. We then remove X from P and repeat until
every cluster path of effective diameter at least ¢ only has MST edges to level-i clusters incident
to its endpoint e-clusters.

Phase 2: e-clusters in high diameter paths. Let e be a spanner edge in F; whose endpoints,
x and y are in high-diameter cluster paths, P and Q, respectively, where it may be that P = Q.
Let C; and Cy be the e-clusters containing x and y, respectively. We only proceed with this phase
if the two affix cluster subpaths of P ending at C, have effective diameter at least ¢ (likewise for
Q). Let P; and P, be the two minimal subpaths of P ending at C, that have effective diameter
at least £. Likewise define Q1 and Qs. We group e-clusters and MST edges of P; U Q1 U Py U Oy
and e as a new level-i cluster. See Figure [1| for an illustration of the different forms this cluster can
take.

Phase 3: Low diameter components. Let F be the set of trees (and paths) remaining of
effective diameter at most £. By construction, each component 7’ of F has a MST edge, say e, to
a level-i cluster constructed in previous phases, say C. We augment C by 7' and e.



Figure 1: Three different forms that a cluster (enclosed in the dotted red curves) in Phase 2 can
take. The solid blue line is the spanner edge e. (a) e connects e-clusters in different clusters paths,
(b) e connects e-cluster in the same path and P; and Q; are disjoint and (c) e connects e-cluster
in the same path and P; and Q; are overlapped. In case (c), we redefine P; = Q1 = Pyy.

Phase 4: Remaining high diameter paths. Let P be a cluster path of effective diameter at
least £. We greedily break P into subpaths of effective diameter at least £ and at most 2¢. If any
affix of P, say P’, has a MST edge, say e, to a level-i cluster constructed in previous phases, say
C, we augment C with P’ and e. We then make each remaining cluster subpath of P into a new
level-i cluster.

This completes the cluster construction for level i.

3.2 Showing diameter-credit invariant DC2

By construction, each level-i cluster constructed in Phase 4 is a cluster path of effective diameter
at most 2¢. By Observation [I0} we have:

Claim 11. Level-i clusters constructed in Phase 4 have diameter at most 4£.
Claim 12. Level-i clusters have diameter at most 330 when € is smaller than %.

Proof. Let C be a level-i cluster that is initially formed in Phase 1 or 2. By construction, C' may
be augmented in Phases 3 and 4. Let C’ and C” be the augmented clusters of C' after Phase 3
and Phase 4, respectively. It could be that C = C’ = C”. C’ is obtained from C by attaching
trees of effective diameter at most ¢ via MST edges. C” is obtained from C’ by attaching trees of
effective diameter at most 2¢ via MST edges. Recall each MST edge has length at most wg. By
Observation [I0] we have:

diam(C”") < diam(C') + 4¢ + 2wy and diam(C") < diam(C”) + 8¢ + 2wy (3)

If C is constructed in Phase 1, by Observation after Step 1, diam(C') < 4¢. Since in Step 2,
C' is augmented by e-clusters via MST edges, after Step 2, diam(C') < 40+ 2wy +2gel < 8¢ (¢ > wy
by construction of the base case). If C' is constructed in Phase 2, we have:

diam(C) < diam(P;) + diam(P2) + diam(Q;) + diam(Q2) + £(e)

Since P1, P2, Q1, Q2 are minimal, each has effective diameter at most ¢ + gef. Thus, diam(C) <
4(20 + 2gel) + £ = 90 + 9gel < 17¢. Thus, in both cases, diam(C) < 17¢. By Equation ,
diam(C") < 29¢ + 4wy < 33¢. O

Thus, by Claim we can choose g = 33.



3.3 Showing diameter-credit invariant DC1

Let Ax be the maximum degree of the cluster graph K. By Lemma |8 Ax = ¢ 0@, We define
cr(X) to be the total credits of a set of e-clusters X'.

3.3.1 Clusters originating in Phase 4

Let C be a level-i cluster formed in Phase 4. We call C a long cluster if it has at least 2?9 +1
e-clusters and a short cluster otherwise. We have:

Claim 13. A long cluster can both maintain invariant DC1 and pay for its incident spanner edges
when c(e) = e O,

Proof. Let X be a set of any 2?9 e-clusters of C. By invariant DC1 for level ¢ — 1, we have:

er(X) > 2?90(6)6/2 = c(e)gl

which is at least ¢(¢) - max(diam(C'), £/2) since diam(C) < g¢ as shown in Claim [11] (since g = 33).
Thus, credits of X are enough to maintain DC1 for C.

Since C'is a long cluster, there is at least one e-cluster, say Y, not in X. By DCI for level 1 — 1,
Y has at least c(€)f/2 credits. Since there are at most:

Ax- (29 + 1) _ —0M)
€

level-i spanner edges incident to e-clusters in X U {Y'}, Y’s credits are enough to pay for those
spanner edges when c(e) = ¢ 9@,

For each e-cluster z € C'\ (¥ U{Y'}), we use z’s credit to pay for the spanner edges incident
to z. By Lemma [§ and invariant DC1 for level ¢ — 1, this amount of credit is sufficient when
c(e) = e Od), O

Claim 14. The credits of e-clusters and MST edges connecting e-clusters of each short cluster C
are enough to maintain invariant DC1 for C.

Proof. We abuse notation by letting MST(C) be the set of MST edges in C' that connects its
e-clusters. Since C' is a cluster path, we have:

diam(C) < > diam(X) + > w(e)

X.€C eEMST(C)

By invariant DC1 for level i — 1, cr(X,) > c(e) - diam(X) and since each MST edge has credit at
least c(€) times its length, the claim follows. O

A short cluster may need to use all the credits of e-clusters and MST edges to maintain DC1,
hence, it many not have extra credit to pay for any incident level-i spanner edges. In this case, we
need to use credits of other level-i clusters to pay for those spanner edges. We call a short cluster
internal if it is not an affix of a long path P in Phase 4.

Observation 15. There is no level-i spanner edge e that has both endpoints in internally short
clusters.



Proof. If there is such an edge e, it would be grouped into a level-i cluster in Phase 2. O

Thus, a level-i spanner edge incident to an internally short cluster can be paid by the level-:
cluster that contains the other endpoint of e. However, if a short cluster is not internal, we must
find a way to pay for its incident spanner edges. Recall after Phase 1, every cluster path of effective
diameter at least £ must have an MST edge from one of its endpoint e-clusters to a level-i cluster.
By construction in Phase 4, if a short cluster is an affix of P, called a short affix cluster, the other
affix of P, called the sibling affiz, must have an MST edge to a cluster originating in the first two
phases and thus augments it. (The only exception is when there is no level-i clusters after the first
two phases and we will handle this case at the end of this paper.) Thus, we can use the credit of
e-clusters of the sibling affices to pay for incident spanner edges of affix short clusters. To that end,
we analyze clusters originally constructed in the first two phases.

3.3.2 Clusters originating in Phase 142

Let C be a level-i cluster constructed in Phase 1 or 2. Let ¢’ and C” be the augmentations of
C in Phase 3 and 4, respectively. Let D be the diameter path of the spanner given by edges and
vertices in C”. Let D be the walk obtained from D by contracting each maximal subpath of D
that is inside an e-cluster of C” to a single vertex.

Definition 16 (Canonical pair). Let S C CUD be a subset of e-clusters of C" such that |S| < 279
and the credits of e-clusters in S and MST edges of C" are sufficient to maintain invariant DC1
for C". Let' Y be an e-cluster of C that is not in S. We call (S,Y) a canonical pair of C".

Note that we do not claim the existence of canonical pairs. Indeed, the main goal of this
subsection is to prove that a canonical pair exists for C” since its existence implies that C”\ S # 0.
Thus, we can use credits of e-clusters in C”\ S to pay for level-i spanner edges incident to e-clusters
of C" and e-clusters of short affix clusters hat have sibling affices in C”.

Claim 17. If C” has a canonical pair (S,Y), we then can pay for every level-i spanner edge that
is incident to e-clusters of C" and e-clusters of short affix clusters that have sibling affices in C"
using credits of e-clusters in C" \ S when c(e) = e O,

Proof. Let R be a set of e-clusters that contains every e-cluster in S U {Y} and affix short clusters
in Phase 4 whose sibling affices contain an e-cluster of D. Recall that C’ is augmented by attaching
paths of e-clusters via MST edges. Thus, R contains at most two short clusters as a result of Phase
4 (see Figure [2). Since |S| < 279 and each short cluster has at most 2?9 e-clusters, |R| = O(£). Since
each e-cluster is incident to at most Ag level-i spanner edges by Lemma [§] e-clusters in R are
incident to at most O(QAT’C) level-i spanner edges. Recall that each level-: spanner edge has length
at most ¢. By invariant DC1 for level ¢ — 1, Y has at least c(e)e//2 credits. Thus, by choosing
cle) = @(QS—Q’C) = ¢ 9 Y’s credit is sufficient to pay for every spanner edge incident to e-clusters
in R.

For each e-cluster z in C” \ R, the credit of z is sufficient to pay for incident level-i spanner
edges incident to z. However, we also need to pay for short affix clusters in Phase 4, whose siblings
augment C’ in Phase 4. To afford this, we use half the credit of each e-cluster in C'\ R (of value at
least c(€)el/4 by invariant DC1 for level i — 1) to pay for level-i spanner edges incident to it. Since
each e-cluster is incident to at most Ay level-i spanner edges by Lemma [8] this credit is sufficient
when c¢(e) > MT’C =00,



Figure 2: Clusters C,C’ and C” are enclosed by yellow-shaded, cyan-shaded and green-shaded
regions, respectively. The red path is the cluster walk D. Shaded e-clusters are in S and Y is the
square e-cluster. Short affix clusters in Phase 4 are enclosed by dotted blue curves. R contains
SU{Y} and two (annotated) short affix clusters that have two corresponding sibling affices in D.

Since C’ is augmented by attaching cluster paths via MST edges, an affix cluster not in R has
its sibling in a subset of C” \ R. For each short affix cluster X" (see Figure [2)) whose sibling affix,
say Q, is in C”, we use the remaining half of the credits of the e-clusters of Q to pay for the level-;
spanner edges incident to X. By Lemma [8] X is incident to at most %gA;g level-i spanner edges.
Since ediam(Q) > ¢, er(Q) > c(e)¢ by invariant DC1 for level ¢ — 1. Thus, half the credit of Q is
sufficient when c(€) > %gA;C =00, O

By Claim([17] it remains to show that C” has a canonical pair (S,Y). Let X be a set of e-clusters.
We define a subset of X as follows:

X if |X| <29/,
any subset of 29/ e-clusters of X otherwise

[ X ]2g/, = {

Claim 18. If C is constructed in Phase 1, then C" has a canonical pair.

Proof. Recall C' is a tree of e-clusters. That implies C” is also a tree of e-clusters that are connected
by MST edges. Thus, D is a simple path. Since C' contains a branching e-cluster X, there must
be at least one neighbor e-cluster of X that is not in D. Let Y be an arbitrary neighbor e-cluster
in C of X and S = |D]ay_. By definition, |S] < 2.

It remains to show that credits of e-clusters of S and MST edges of D is sufficient to guarantee
invariant DC1 for C”. Suppose that S contains at least 2?9 e-clusters. By invariant DC1 for level
i—1, cr(S) > c(e)gl > c(e) max(diam(C”), £/2) which is enough to maintain invariant DC1. Thus,
we can assume that S contains every e-cluster of D. Since D consists of e-clusters and MST edges
only, we have:

diam(D) < > diam(X)+ > w(e)

X.€D cEMST(D)

Thus, credits of e-clusters of § and MST edges of D are sufficient to maintain DC1. O

We now consider the case when C' is constructed in Phase 2. Recall C' consists of four paths
P1, P2, Q1, Qo that are not necessarily distinct and a single spanner edge e (see Figure [1)).

Claim 19. If the four paths P1, Pa, Q1, Qo are distinct, then C" has a canonical pair.
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Proof. Let F = {P1,P2,Q1,Q2}. By construction in Phase 2, C' is an acyclic graph of e-clusters
connected by MST edges and a single spanner edge e. Thus, D is a simple path. That implies
at most two paths, say P’ and Q’, among four paths in F share e-clusters with D. Let other two
paths of F be P” and Q”. Let Y be an arbitrary e-cluster of Q" and

S=[DUP' UQUP" |z,

IfS= 279, then cr(S) > ¢(e)gl by invariant DC1 for level i — 1. Hence, credits of e-clusters in S are
sufficient to maintain DC1 for C” since diam(C”) < g¢ as shown in the previous section.

Thus, we can assume that S < 279. In this case, S = DU P U Q UP”. If D does not
contain the spanner edge e, using the same argument in Claim we can show that credits
of e-clusters and MST edges of D are sufficient to maintain invariant DC1 for C”. Otherwise,
we assign credits of P” to e. Since ediam(P”) > ¢ > w(e), by invariant DC1 for level i — 1,
cr(P") > c(e)ediam(P”) > c(e)w(e). Thus e is assigned credit of at least ¢(e) times its length. We
then use credits of e-clusters and edges of D to maintain DC1. The rest of the proof is similar to
Claim [18 O

We assume that Py = Qi = Pyy. In this case, C' contains a unique cycle, which is {e} U Pyy.
We first prove that D is a path when e is sufficiently small.
Claim 20. D is a path if € is smaller than %.

Proof. 1f D is not simple, it contains a cycle C.,. Let u and v be two vertices of the same e-cluster,
say X, such that D enters and leaves C;, at u and v, respectively. Then, the subpath D,,, between
u and v of D must contain edge e of length at least £/2. However, we can shortcut D, through X,
by a path of length at most diam(X,) < gel by DC2. For € < %, the shortcut has length smaller
than w(Dy,), contradicting that D is a shortest path. O

Observation 21. P,,  D.
Proof. For otherwise, D could be shortcut through e at a cost of
< diam(C;) 4 diam(Cy) + w(e) — (diam(P,y) — diam(C,) — diam(Cy))

cost of shortcut lower bound on diameter

< w(e) +4gel — (1 + se)w(e) (by the stretch condition for e)
< 4dgel — sel/2  (since w(e) > {/2)

€)
This change in cost is negative for s > 8¢g + 1. O

Claim 22. C” has a canonical pair.

Proof. Let Y be an e-cluster of Py, \ D. Y exists by Observation We define:
S = LD UPyU Qo U Pmy \ {Y}ng/€

If |S| = 279, then the total credit of e-clusters in S is at least ¢(€)gf by invariant DC1 for level i — 1.
Thus credits of e-clusters in S is sufficient to maintain invariant DC1 for C”. That implies C” has
a canonical pair.

Otherwise, S = DUP2U Q2 U Py, \ {Y}. If D does not contain the spanner edge e, then by the
same argument in Claim we can argue that credits of e-clusters and MST edges in D is enough
to maintain invariant DC1 for C”. Thus, we can assume that D contains e. We consider two cases:

11



1. D contains an internal e-cluster of P,. Since D is a path by Claim@ its does not contain any
internal e-cluster of at least one of two paths Py, Qa, w.l.o.g., say Ps. Since ediam(Pq) > ¢,
by invariant DC1 for level ¢ — 1, the total credit of e-clusters in Ps is at least c¢(e)¢ which is
at least c(e)w(e). Thus, by assigning credits of Pz to e, every edge of D has credit at least
c(e) times it length. Thus, credits of e-clusters and edges of D are enough to maintain DC1
for C".

2. D does not contain any internal e-cluster of P,. We have:
diam(Pyy \ {Cz, Cy})
> diam(Pyy) — diam(C,) — diam(Cy)
> (1+ se)w(e) — diam(C,) — diam(Cy) (by the stretch condition) (4)
> w(e) + sel/2 — 2gel  (by bounds on w(e) and DC2)
> w(e) 4+ gel  (for s > 8g + 1, as previously required)
The credit of the MST edges and e-clusters of Py, \ {Cy, Cy} is at least:
c(e) - (MST(Pay \ {Cs, Cy}) + ediam(Pzy \ {Ca, Cy}))
> c(e) - diam(Pyy \ {Cs, Cy})
> c(e)(w(e) + gel) O
Since diam(Y") < gel by invariant DC2 for level i — 1, the total credit of e-clusters of Py, \
{C3,Cy, Y} and MST edges of Pyy \ {Cy, Cy} is at least c(e) - w(e). Thus, by assigning this

credit to e, we can argue that credits of e-clusters and edges of D are enough to maintain
DC1 for C”.

3.3.3 No Phase 1 or 2 clusters

We now deal with the case when there are no level-i clusters formed in Phase 1 and 2.

Observation 23. There is no level-i cluster formed in Phase 1 and 2 if and only if (i) the tree T
of e-clusters is a path and (ii) every spanner edge is incident to an e-cluster in an affiz of T having
effective diameter at most 2¢.

By Claim we only need to pay for spanner edges incident to short affix clusters of 7. Since
short clusters have at most 2?9 e-clusters, there are at most % such spanner edges, that we assign

to set B (Lemma . Below, we show that w(B) < ¢ 9@ . (MST) across all levels, implying
Lemma [7

Claim 24. w(B) < e 9@ . (MST).
Proof. We have:

ge Z& < ge Crnax Z €', where (o = maxees{w(e)}

%

NTANS

< w(MST) > "¢ (5)

€ -
1

49A’Cw(MST)L = ¢ 9@ . »(MST)

<
€ 1—c¢
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A Notation and definitions

Let G(V(G), E(G)) be a connected and undirected graph with a positive edge weight function
w: B(G) — Rt \ {0}. We denote |V(G)| and |E(G)| by n and m, respectively. Let MST(G) be
a minimum spanning tree of GG; when the graph is clear from the context, we simply write MST.
A walk of length p is a sequence of alternating vertices and edges {vg, €g, v1,€1,...,€p—1,vp} such
that e; = v;v;41 for every ¢ such that 1 < 0 < p— 1. A path is a simple walk where every vertex
appears exactly once in the walk. For two vertices x,y of G, we use dg(x,y) to denote the shortest
distance between = and y.

Let S be a subgraph of G. We define w(S) = _ cp(s) w(e). Let X C V(G) be a set of vertices.
We use G[X] to denote the subgraph of G induced by X. Let Y C E(G) be a subset of edges of
G. We denote the graph with vertex set V(G) and edge set Y by G[Y].

B Greedy spanners

A subgraph S of G is a (1 + €)-spanner of G if V(S) = V(G) and ds(z,y) < (14 €)dg(x,y) for all
z,y € V(G). The following greedy algorithm by Althofer et al. [1] finds a (1 + €)-spanner of G:

GREEDYSPANNER(G(V, E),¢€)
S« (V,0).
Sort edges of E in non-decreasing order of weights.
For each edge xy € E in sorted order
if (1+ eJw(zy) < ds(z,y)
E(S) «+ E(S)U{e}
return S

Observe that as algorithm GREEDYSPANNER is a relaxation of Kruskal’s algorithm, MST(G) =
MST(S). Since we only consider (1 + €)-spanners in this work, we simply call an (1 4 €)-spanner a
a spanner. We define the lightness of a spanner S to be the ratio % We call S light if its
lightness is independent of the number of vertices or edges of G.

C Omitted Proofs

Proof of Lemma[8 To show that K is simple, we use the same argument as Borradaile, Le and
Waulff-Nilsen [5] that we briefly sketch here. Recall e-clusters have diameter at most gel by the
diameter-credit invariants. Recall edges in E; have weight in range (¢/2,¢]. Thus, when € is
sufficiently small, IC has no self-loops. To show that K has no parallel edges, we assume there are
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such two zy and uwv where w(zy) < w(uwv). Let Cy, C, be two e-clusters that contain u and v,
respectively. We further assume, w.l.o.g, that € C,,y € C,. Then the u-to-v path P, from u to
x inside Cy, edge xy and then y to v inside C), has length at most w(xy) + 2gef, which is at most
(1 +4ge)w(uv) since w(uv) > £/2. Thus, by choosing s > 4¢, edge uv is not added to the spanner
by the greedy algorithm. Thus, K is simple. O
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